Tech-invite3GPPspecsSIPRFCs
Overview21222324252627282931323334353637384‑5x

Content for  TS 23.501  Word version:  17.0.0

Top   Top   Up   Prev   Next
1…   3…   4…   4.2.4   4.2.5…   4.2.8…   4.2.8.2.2   4.2.8.2.3…   4.2.8.4…   4.2.9…   4.3…   4.3.3   4.3.4   4.3.5   4.4…   4.4.6…   4.4.8   5…   5.3…   5.3.3…   5.4…   5.5…   5.6…   5.6.7…   5.7…   5.7.2…   5.7.3…   5.7.4   5.7.5…   5.8…   5.8.2.11…   5.9…   5.10…   5.11…   5.15…   5.16…   5.17…   5.18…   5.19…   5.21…   5.22…   5.27…   5.28…   5.29…   5.30…   5.31…   5.32…   5.33…   5.34…   5.35…   6…   6.3…   7…   7.2…   8…   8.2.4   8.2.5…   8.3…   A…   D…   E…   F   G…   G.3   G.4…   J…

 

5.28  Support of integration with TSN |R16|Word‑p. 285

5.28.1  5GS bridge management

5GS acts as a Layer 2 Ethernet Bridge. When integrated with IEEE TSN network, 5GS functions acts as one or more TSN Bridges of the TSN network. The 5GS Bridge is composed of the ports on a single UPF (i.e. PSA) side, the user plane tunnel between the UE and UPF, and the ports on the DS-TT side. For each 5GS Bridge of a TSN network, the port on NW-TT support the connectivity to the TSN network, the ports on DS-TT side are associated to the PDU Session providing connectivity to the TSN network.
The granularity of the 5GS TSN bridge is per UPF for each network instance. The bridge ID of the 5GS TSN bridge is bound to the UPF ID of the UPF as identified in TS 23.502. The TSN AF stores the binding relationship between a port on UE/DS-TT side and a PDU Session during reporting of 5GS TSN bridge information. The TSN AF also stores the information about ports on the UPF/NW-TT side. The UPF/NW-TT forwards traffic to the appropriate egress port based on the traffic forwarding information. From the TSN AF point of view, a 5GS TSN bridge has a single NW-TT entity within UPF and the NW-TT may have multiple ports that are used for traffic forwarding.
There is only one PDU Session per DS-TT port for a given UPF. All PDU Sessions which connect to the same TSN network via a specific UPF are grouped into a single 5GS bridge. The capabilities of each port on UE/DS-TT side and UPF/NW-TT side are integrated as part of the configuration of the 5GS Bridge and are notified to TSN AF and delivered to CNC for TSN bridge registration and modification.
Reproduction of 3GPP TS 23.501, Figure 5.28.1-1: Per UPF based 5GS bridge
Up
In order to support TSN scheduled traffic (clause 8.6.8.4 in IEEE Std 802.1Q-2018 [98]) over 5GS Bridge, the 5GS supports the following functions:
  • Configure the bridge information in 5GS.
  • Report the bridge information of 5GS Bridge to TSN network after PDU session establishment.
  • Receiving the configuration from TSN network as defined in clause 5.28.2.
  • Map the configuration information obtained from TSN network into 5GS QoS information (e.g. 5QI, TSC Assistance Information) of a QoS Flow in corresponding PDU Session for efficient time-aware scheduling, as defined at clause 5.28.2.
The bridge information of 5GS Bridge is used by the TSN network to make appropriate management configuration for the 5GS Bridge. The bridge information of 5GS Bridge includes at least the following:
  • Information for 5GS Bridge:
    • Bridge ID
      Bridge ID is to distinguish between bridge instances within 5GS. The Bridge ID can be derived from the unique bridge MAC address as described in IEEE Std 802.1Q [98], or set by implementation specific means ensuring that unique values are used within 5GS;
    • Number of Ports;
    • list of port numbers.
  • Capabilities of 5GS Bridge as defined in IEEE Std 802.1Qcc [95]:
    • 5GS Bridge delay per port pair per traffic class, including 5GS Bridge delay (dependent and independent of frame size, and their maximum and minimum values: independentDelayMax, independentDelayMin, dependentDelayMax, dependentDelayMin), ingress port number, egress port number and traffic class.
    • Propagation delay per port (txPropagationDelay), including transmission propagation delay, egress port number.
    • VLAN Configuration Information.
  • Topology of 5GS Bridge as defined in IEEE Std 802.1AB [97]:
    • Chassis ID subtype and Chassis ID of the 5GS Bridge.
  • Traffic classes and their priorities per port as defined in IEEE Std 802.1Q [98].
  • Stream Parameters as defined in clause 12.31.1 in IEEE Std 802.1Q [98], in order to support PSFP information:
    • MaxStreamFilterInstances: The maximum number of Stream Filter instances supported by the bridge;
    • MaxStreamGateInstances: The maximum number of Stream Gate instances supported by the bridge;
    • MaxFlowMeterInstances: The maximum number of Flow Meter instances supported by the bridge (optional);
    • SupportedListMax: The maximum value supported by the bridge of the AdminControlListLength and OperControlListLength parameters.
The following parameters: independentDelayMax and independentDelayMin, how to calculate them is left to implementation and not defined in this specification.
Bridge ID of the 5GS Bridge, port number(s) of the Ethernet port(s) in NW-TT could be preconfigured on the UPF. The UPF is selected for a PDU Session serving TSC as described in clause 6.3.3.3.
This release of the specification requires that each DS-TT port is assigned with a globally unique MAC address.
When there are multiple network instances within a UPF, each network instance is considered logically separate. The network instance for the N6 interface (clause 5.6.12) may be indicated by the SMF to the UPF for a given PDU session during PDU session establishment.
The TSN AF is responsible to receive the bridge information of 5GS Bridge from 5GS, as well as register or update this information to the TSN network.
Up

5.28.2  5GS Bridge configurationWord‑p. 287
The configuration information of 5GS Bridge as defined in IEEE Std 802.1Q [98] clause 8.6.8.4, includes the following:
  • Bridge ID of 5GS Bridge.
  • Configuration information of scheduled traffic on ports of DS-TT and NW-TT:
    • Egress ports of 5GS Bridge, e.g. ports on DS-TT and NW-TT;
    • Traffic classes and their priorities.
The configuration information of 5GS Bridge as defined in IEEE Std 802.1Q [98], includes the following:
  • Chassis ID of 5GS Bridge;
  • Traffic forwarding information as defined in IEEE Std 802.1Q [98] clause 8.8.1:
    • Destination MAC address and VLAN ID of TSN stream;
    • Port number in the Port MAP as defined in IEEE Std 802.1Q [98] clause 8.8.1.
  • Configuration information per stream according to IEEE Std 802.1Q [98] clause 8.6.5.1 including:
    • Stream filters.
    • Stream gates.
The SMF report the MAC address of the DS-TT port of the related PDU Session to TSN AF via PCF. The association between the DS-TT MAC address, 5GS Bridge ID and port number on DS-TT is maintained at TSN AF and further used to assist to bind the TSN traffic with the UE's PDU session.
Two models are supported to configure 5GS QoS for TSN traffic:
  • Based on the assumption that PSFP information is always provided by CNC: In this case the QoS Flows are setup based on the PSFP information provided by CNC;
  • Without requiring PSFP information provided by the CNC.: In this case, pre-configured QoS flows are used and configured e.g. during PDU session establishment as described in clause 5.28.4. Additional QoS flows are setup as necessary based on the PSFP, if available, as described in this clause.
When PSFP information is available, TSN AF identifies the ingress and egress port for the TSN stream as described in Annex I and determines the DS-TT port MAC address(es) identifying the corresponding PDU session(s) carrying the TSN stream. Flow direction of a TSN stream is determined as follows: if the ingress port is a DS-TT port, then the Flow direction is UL; otherwise if the ingress port(s) is (are) NW-TT port, the Flow direction is DL. Flow direction is part of the TSCAI as defined in clause 5.27.2.
The TSN AF uses the stream filter instances of PSFP information to derive the service data flow for TSN streams. The TSN AF uses the Priority values in the stream filter instances in PSFP information (if available) as defined in IEEE Std 802.1Q [98] clause 8.6.5.1, the 5GS bridge delay information (see clause 5.27.5) and may additionally use scheduled traffic information as defined in IEEE Std 802.1Q [98] clause 8.6.8.4, to derive the TSN QoS information (i.e. priority and delay) for a given TSN stream or flow of aggregated TSN streams.
The TSN AF identifies the egress port for the TSN stream using local configuration or static filtering entry that matches the TSN stream. If the TSN AF determines that the TSN stream is for UE-UE communication (i.e. ingress and egress ports are in DS-TTs), the TSN AF divides the stream into one uplink stream and one or more downlink streams and provides the streams on AF Session basis to the PCF(s).The SMF applies local switching as specified in clause 5.8.2.13 or clause 5.8.2.5.3 in order to enable UPF locally forward uplink stream from one PDU session as downlink stream in another PDU session.
When CNC configures the PSFP information to the TSN AF, TSN AF determines the TSC Assistance Container as described in clause 5.27.2. The TSN AF associates the TSN QoS information and TSC Assistance Container (if available) with the corresponding service data flow description and provides to the PCF and the SMF as defined in TS 23.503, clause 6.1.3.23.
Up

5.28.3  Port and bridge management information exchange in 5GSWord‑p. 288

5.28.3.1  General

Port number of the DS-TT for the PDU Session is assigned by the UPF during PDU session establishment. The port number of the DS-TT port for a PDU Session shall be reported to the SMF from the UPF and further stored at the SMF. The SMF provides the DS-TT port number via PCF to the TSN AF or NEF. TSN AF or NEF maintains an association between the DS-TT port number and the MAC address (with Ethernet type PDU session) or IP address (with IP type PDU Session) of the UE. If a PDU session for which SMF has reported a DS-TT port number to TSN AF or NEF is released, then SMF informs TSN AF or NEF accordingly.
5GS shall support transfer of standardized and deployment-specific port management information transparently between TSN AF or NEF and DS-TT or NW-TT, respectively inside a Port Management Information Container. NW-TT may support one or more ports. In this case, each port uses separate Port Management Information Container. 5GS shall also support transfer of standardized and deployment-specific bridge management information transparently between TSN AF or NEF and NW-TT, respectively inside a Bridge Management Information Container. Table 5.28.3.1-1 and Table 5.28.3.1-2 list standardized port management information and bridge management information, respectively.
If TSN AF is deployed, i.e. if 5GS is integrated with an IEEE TSN network, the port and bridge management information is exchanged between CNC and TSN AF. The port management information, is related to ports located in DS-TT or NW-TT.
If TSN AF is not deployed, the port and bridge management information is exchanged between NEF and DS-TT/NW-TT.
Port management information Applicability (6) Supported
operations
by TSN AF
(1)
Reference
DS-TT NW-TT
General
Port management capabilities (2)XXR
Bridge delay related information
txPropagationDelayXXR IEEE Std 802.1Qcc [95] clause 12.32.2.1
Traffic class related information
Traffic class tableXXRW IEEE Std 802.1Q [98] clause 12.6.3 and clause 8.6.6.
Gate control information
GateEnabledXXRW IEEE Std 802.1Q [98] Table 12-29
AdminBaseTimeXXRW IEEE Std 802.1Q [98] Table 12-29
AdminControlListXXRW IEEE Std 802.1Q [98] Table 12-29
AdminCycleTime (3)XXRW IEEE Std 802.1Q [98] Table 12-29
AdminControlListLength (3)XXRW IEEE Std 802.1Q [98] Table 12-28
Tick granularityXXR IEEE Std 802.1Q [98] Table 12-29
General Neighbor discovery configuration (4)
adminStatusDXRW IEEE 802.1AB [97] clause 9.2.5.1
lldpV2LocChassisIdSubtypeDXRW IEEE 802.1AB [97] Table 11-2
lldpV2LocChassisIdDXRW IEEE 802.1AB [97] Table 11-2
lldpV2MessageTxIntervalDXRW IEEE 802.1AB [97] Table 11-2
lldpV2MessageTxHoldMultiplierDXRW IEEE 802.1AB [97] Table 11-2
NW-TT port neighbor discovery configuration
lldpV2LocPortIdSubtypeXRW IEEE 802.1AB [97] Table 11-2
lldpV2LocPortIdXRW IEEE 802.1AB [97] Table 11-2
DS-TT port neighbor discovery configuration
lldpV2LocPortIdSubtypeDRW IEEE 802.1AB [97] Table 11-2
lldpV2LocPortIdDRW IEEE 802.1AB [97] Table 11-2
Neighbor discovery information for each discovered neighbor of NW-TT
lldpV2RemChassisIdSubtypeXR IEEE 802.1AB [97] Table 11-2
lldpV2RemChassisIdXR IEEE 802.1AB [97] Table 11-2
lldpV2RemPortIdSubtypeXR IEEE 802.1AB [97] Table 11-2
lldpV2RemPortIdXR IEEE 802.1AB [97] Table 11-2
TTLXR IEEE 802.1AB [97] clause 8.5.4
Neighbor discovery information for each discovered neighbor of DS-TT (5)
lldpV2RemChassisIdSubtypeDR IEEE 802.1AB [97] Table 11-2
lldpV2RemChassisIdDR IEEE 802.1AB [97] Table 11-2
lldpV2RemPortIdSubtypeDR IEEE 802.1AB [97] Table 11-2
lldpV2RemPortIdDR IEEE 802.1AB [97] Table 11-2
TTLDR IEEE 802.1AB [97] clause 8.5.4.1
Stream Parameters (11)
MaxStreamFilterInstancesXR IEEE Std 802.1Q [98] clause 12.31.1.1
MaxStreamGateInstancesXR IEEE Std 802.1Q [98] clause 12.31.1.2
MaxFlowMeterInstancesXR IEEE Std 802.1Q [98] clause 12.31.1.3
SupportedListMaxXR IEEE Std 802.1Q [98] clause 12.31.1.4
Per-Stream Filtering and Policing information (10)
Stream Filter Instance Table (8) IEEE Std 802.1Q [98] Table 12-32
> StreamFilterInstanceIndexXXRW IEEE Std 802.1Q [98] Table 12-32
> Stream Identification typeXXRW IEEE 802.1CB [83] clause 9.1.1.6
> Stream Identification Controlling ParametersXXRW IEEE 802.1CB [83] clauses 9.1.2, 9.1.3, 9.1.4 (12)
> PrioritySpecXXRW IEEE Std 802.1Q [98] Table 12-32
> StreamGateInstanceIDXXRW IEEE Std 802.1Q [98] Table 12-32
Stream Gate Instance Table (9) IEEE Std 802.1Q [98] Table 12-33
StreamGateInstanceIndexXXR IEEE Std 802.1Q [98] Table 12-33
PSFPAdminBaseTimeXXRW IEEE Std 802.1Q [98] Table 12-33
PSFPAdminControlListXXRW IEEE Std 802.1Q [98] Table 12-33
PSFPAdminCycleTimeXXRW IEEE Std 802.1Q [98] Table 12-33
PSFPTickGranularityXXR IEEE Std 802.1Q [98] Table 12-33
Time Synchronization Information
Supported PTP instance types (13)XR IEEE Std 1588-2019 [126] clause 8.2.1.5.5
Supported transport types (14)XR
Supported delay mechanisms (15)XR IEEE Std 1588-2019 [126] clause 8.2.15.4.4
PTP grandmaster capable (16)XR
gPTP grandmaster capable (17)XR
Supported PTP profiles (18)XR
Number of supported PTP instancesXR
PTP Instance IDXXRW
> PTP profile (19)XXRW
> Transport type (20)XXRW
> Grandmaster enabled (21)XRW
IEEE Std 1588-2019 [126] data sets (NOTE 22)
> defaultDS.clockIdentityXXRWIEEE Std 1588-2019 [126] clause 8.2.1.2.2
> defaultDS.clockQuality.clockClassXXRWIEEE Std 1588-2019 [126] clause 8.2.1.3.1.2
> defaultDS.clockQuality.clockAccuracyXXRWIEEE Std 1588-2019 [126] clause 8.2.1.3.1.3
> defaultDS.clockQuality.offsetScaledLogVarianceXXRWIEEE Std 1588-2019 [126] clause 8.2.1.3.1.4
> defaultDS.priority1XXRWIEEE Std 1588-2019 [126] clause 8.2.1.4.1
> defaultDS.priority2XXRWIEEE Std 1588-2019 [126] clause 8.2.1.4.2
> defaultDS.domainNumberXXRWIEEE Std 1588-2019 [126] clause 8.2.1.4.3
> defaultDS.sdoIdXXRWIEEE Std 1588-2019 [126] clause 8.2.1.4.5
> defaultDS.instanceEnableXXRWIEEE Std 1588-2019 [126] clause 8.2.1.5.2
> defaultDS.externalPortConfigurationEnabledXRWIEEE Std 1588-2019 [126] clause 8.2.1.5.3
> defaultDS.instanceTypeXXRWIEEE Std 1588-2019 [126] clause 8.2.1.5.5
> portDS.portIdentityXXRWIEEE Std 1588-2019 [126] clause 8.2.15.2.1
> portDS.portStateXXRWIEEE Std 1588-2019 [126] clause 8.2.15.3.1
> portDS.logMinDelayReqIntervalXXRWIEEE Std 1588-2019 [126] clause 8.2.15.3.2
> portDS.logAnnounceIntervalXXRWIEEE Std 1588-2019 [126] clause 8.2.15.4.1
> portDS.announceReceiptTimeoutXRWIEEE Std 1588-2019 [126] clause 8.2.15.4.2
> portDS.logSyncIntervalXXRWIEEE Std 1588-2019 [126] clause 8.2.15.4.3
> portDS.delayMechanismXXRWIEEE Std 1588-2019 [126] clause 8.2.15.4.4
> portDS.logMinPdelayReqIntervalXXRWIEEE Std 1588-2019 [126] clause 8.2.15.4.5
> portDS.versionNumberXXRWIEEE Std 1588-2019 [126] clause 8.2.15.4.6
> portDS.minorVersionNumberXXRWIEEE Std 1588-2019 [126] clause 8.2.15.4.7
> portDS.delayAssymetryXXRWIEEE Std 1588-2019 [126] clause 8.2.15.4.8
> portDS.portEnableXXRWIEEE Std 1588-2019 [126] clause 8.2.15.5.1
> timePropertiesDS.currentUtcOffsetXXRWIEEE Std 1588-2019 [126] clause 8.2.4.2
> timePropertiesDS.timeSourceXXRWIEEE Std 1588-2019 [126] clause 8.2.4.9
> externalPortConfigurationPortDS.desiredStateXRWIEEE Std 1588-2019 [126] clause 15.5.3.7.15.1
IEEE Std 802.1AS [104] data sets (NOTE 22)
> defaultDS.clockIdentityXXRWIEEE Std 802.1AS [104] clause 14.2.2
> defaultDS.clockQuality.clockClassXXRWIEEE Std 802.1AS [104] clause 14.2.4.2
> defaultDS.clockQuality.clockAccuracyXXRWIEEE Std 802.1AS [104] clause 14.2.4.3
> defaultDS.clockQuality.offsetScaledLogVarianceXXRWIEEE Std 802.1AS [104] clause 14.2.4.4
> defaultDS.priority1XXRWIEEE Std 802.1AS [104] clause 14.2.5
> defaultDS.priority2XXRWIEEE Std 802.1AS [104] clause 14.2.6
> defaultDS.timeSourceXXRWIEEE Std 802.1AS [104] clause 14.2.15
> defaultDS.domainNumberXXRWIEEE Std 802.1AS [104] clause 14.2.16
> defaultDS.sdoIdXXRWIEEE Std 802.1AS [104] clause 14.2.4.3
> defaultDS.externalPortConfigurationEnabledXRWIEEE Std 802.1AS [104] clause 14.2.18
> defaultDS.instanceEnableXXRWIEEE Std 802.1AS [104] clause 14.2.19
> portDS.portIdentityXXRWIEEE Std 802.1AS [104] clause 14.8.2
> portDS.portStateXRIEEE Std 802.1AS [104] clause 14.8.3
> portDS.ptpPortEnabledXXRWIEEE Std 802.1AS [104] clause 14.8.4
> portDS.delayMechanismXXRWIEEE Std 802.1AS [104] clause 14.8.5
> portDS.isMeasuringDelayXXRIEEE Std 802.1AS [104] clause 14.8.6
> portDS.asCapableXXRIEEE Std 802.1AS [104] clause 14.8.7
> portDS.meanLinkDelayXXRIEEE Std 802.1AS [104] clause 14.8.8
> portDS.meanLinkDelayThreshXXRWIEEE Std 802.1AS [104] clause 14.8.9
> portDS.delayAssymetryXXRWIEEE Std 802.1AS [104] clause 14.8.10
> portDS.neighborRateRatioXXRIEEE Std 802.1AS [104] clause 14.8.11
> portDS.initialLogAnnounceIntervalXXRWIEEE Std 802.1AS [104] clause 14.8.12
> portDS.currentLogAnnounceIntervalXXRIEEE Std 802.1AS [104] clause 14.8.13
> portDS.useMgtSettableLogAnnounceIntervalXXRWIEEE Std 802.1AS [104] clause 14.8.14
> portDS.mgtSettableLogAnnounceIntervalXXRWIEEE Std 802.1AS [104] clause 14.8.15
> portDS.announceReceiptTimeoutXRWIEEE Std 802.1AS [104] clause 14.8.16
> portDS.initialLogSyncIntervalXXRWIEEE Std 802.1AS [104] clause 14.8.17
> portDS.currentLogSyncIntervalXXRIEEE Std 802.1AS [104] clause 14.8.18
> portDS.useMgtSettableLogSyncIntervalXXRWIEEE Std 802.1AS [104] clause 14.8.19
> portDS.mgtSettableLogSyncIntervalXXRWIEEE Std 802.1AS [104] clause 14.8.20
> portDS.syncReceiptTimeoutXRWIEEE Std 802.1AS [104] clause 14.8.21
> portDS.syncReceiptTimeoutTimeIntervalXRWIEEE Std 802.1AS [104] clause 14.8.22
> portDS.initialLogPdelayReqIntervalXXRWIEEE Std 802.1AS [104] clause 14.8.23
> portDS.currentLogPdelayReqIntervalXXRIEEE Std 802.1AS [104] clause 14.8.24
> portDS.useMgtSettableLogPdelayReqIntervalXXRWIEEE Std 802.1AS [104] clause 14.8.25
> portDS.mgtSettableLogPdelayReqIntervalXXRWIEEE Std 802.1AS [104] clause 14.8.26
> portDS.initialLogGptpCapableMessageIntervalXXRWIEEE Std 802.1AS [104] clause 14.8.27
> portDS.currentLogGptpCapableMessageIntervalXXRIEEE Std 802.1AS [104] clause 14.8.28
> portDS.useMgtSettableLogGptpCapableMessageIntervalXXRWIEEE Std 802.1AS [104] clause 14.8.29
> portDS.mgtSettableLogGptpCapableMessageIntervalXXRWIEEE Std 802.1AS [104] clause 14.8.30
> portDS.initialComputeNeighborRateRatioXXRWIEEE Std 802.1AS [104] clause 14.8.31
> portDS.currentComputeNeighborRateRatioXXRIEEE Std 802.1AS [104] clause 14.8.32
> portDS.useMgtSettableComputeNeighborRateRatioXXRWIEEE Std 802.1AS [104] clause 14.8.33
> portDS.mgtSettableComputeNeighborRateRatioXXRWIEEE Std 802.1AS [104] clause 14.8.34
> portDS.initialComputeMeanLinkDelayXXRWIEEE Std 802.1AS [104] clause 14.8.35
> portDS.currentComputeMeanLinkDelayXXRIEEE Std 802.1AS [104] clause 14.8.36
> portDS.useMgtSettableComputeMeanLinkDelayXXRWIEEE Std 802.1AS [104] clause 14.8.37
> portDS.mgtSettableComputeMeanLinkDelayXXRWIEEE Std 802.1AS [104] clause 14.8.38
> portDS.allowedLostResponsesXXRWIEEE Std 802.1AS [104] clause 14.8.39
> portDS.allowedFaultsXXRWIEEE Std 802.1AS [104] clause 14.8.40
> portDS.gPtpCapableReceiptTimeoutXXRWIEEE Std 802.1AS [104] clause 14.8.41
> portDS.versionNumberXXRWIEEE Std 802.1AS [104] clause 14.8.42
> portDS.nupXXRWIEEE Std 802.1AS [104] clause 14.8.43
> portDS.ndownXXRWIEEE Std 802.1AS [104] clause 14.8.44
> portDS.oneStepTxOperXXRIEEE Std 802.1AS [104] clause 14.8.45
> portDS.oneStepReceiveXXRIEEE Std 802.1AS [104] clause 14.8.46
> portDS.oneStepTransmitXXRIEEE Std 802.1AS [104] clause 14.8.47
> portDS.initialOneStepTxOperXXRWIEEE Std 802.1AS [104] clause 14.8.48
> portDS.currentOneStepTxOperXXRWIEEE Std 802.1AS [104] clause 14.8.49
> portDS.useMgtSettableOneStepTxOperXXRWIEEE Std 802.1AS [104] clause 14.8.50
> portDS.mgtSettableOneStepTxOperXXRWIEEE Std 802.1AS [104] clause 14.8.51
> portDS.syncLockedXXRIEEE Std 802.1AS [104] clause 14.8.52
> portDS.pdelayTruncatedTimestampsArrayXXRWIEEE Std 802.1AS [104] clause 14.8.53
> portDS.minorVersionNumberXXRWIEEE Std 802.1AS [104] clause 14.8.54
> timePropertiesDS.currentUtcOffsetXXRWIEEE Std 802.1AS [104] clause 14.5.2
> externalPortConfigurationPortDS.desiredStateRRWIEEE Std 802.1AS [104] clause 14.12.2
NOTE 1:
R = Read only access; RW = Read/Write access.
NOTE 2:
Indicates which standardized and deployment-specific port management information is supported by DS-TT or NW-TT.
NOTE 3:
AdminCycleTime and AdminControlListLength are optional for gate control information.
NOTE 4:
If DS-TT supports neighbor discovery, then TSN AF sends the general neighbor discovery configuration for DS-TT Ethernet ports to DS-TT. If DS-TT does not support neighbor discovery, then TSN AF sends the general neighbor discovery configuration for DS-TT Ethernet ports to NW-TT using the Bridge Management Information Container (refer to Table 5.28.3.1-2) and NW-TT performs neighbor discovery on behalf on DS-TT. When a parameter in this group is changed, it is necessary to provide the change to every DS-TT and the NW-TT that belongs to the 5GS TSN bridge. It is mandatory that the general neighbor discovery configuration is identical for all DS-TTs and the NW-TTs that belongs to the bridge.
NOTE 5:
If DS-TT supports neighbor discovery, then TSN AF retrieves neighbor discovery information for DS-TT Ethernet ports from DS-TT. If DS-TT does not support neighbor discovery, then TSN AF retrieves neighbor discovery information for DS-TT Ethernet ports from NW-TT, using the Bridge Management Information Container (refer to Table 5.28.3.1-2), the NW-TT performing neighbor discovery on behalf on DS-TT.
NOTE 6:
X = applicable; D = applicable when validation and generation of LLDP frames is processed at the DS-TT.
NOTE 7:
Void.
NOTE 8:
There is a Stream Filter Instance Table per Stream.
NOTE 9:
There is a Stream Gate Instance Table per Gate.
NOTE 10:
TSN AF indicates the support for PSFP to the CNC only if each DS-TT and NW-TT of the 5GS bridge has indicated support of PSFP. DS-TT indicates support of PSFP using port management capabilities, i.e. by indicating support for the Per-Stream Filtering and Policing information and by setting higher than zero values for MaxStreamFilterInstances, MaxStreamGateInstances, MaxFlowMeterInstances, SupportedListMax parameters. When available, TSN AF uses the PSFP information for determination of the traffic pattern information as described in Annex I. The PSFP information can be used at the DS-TT (if supported) and at the NW-TT (if supported) for the purpose of per-stream filtering and policing as defined in IEEE Std 802.1Q [98] clause 8.6.5.1.
NOTE 11:
TSN AF composes a Stream Parameter Table towards the CNC. It is up to TSN AF how it composes the Stream Parameter Table based on the numerical values as received from DS-TT and NW-TT port(s) and for the bridge for each individual parameter.
NOTE 12:
The set of Stream Identification Controlling Parameters depends on the Stream Identification type value as defined in IEEE Std 802.1CB [83] Table 9-1 and clauses 9.1.2, 9.1.3, 9.1.4.
NOTE 13:
Enumeration of supported PTP instance types. Allowed values as defined in IEEE Std 1588-2019 [126] clause 8.2.1.5.5.
NOTE 14:
Enumeration of supported transport types. Allowed values: IPv4 (as defined in IEEE Std 1588-2019 [126] Annex C), IPv6 (as defined in IEEE Std 1588-2019 [126] Annex D), Ethernet (as defined in IEEE Std 1588-2019 [126] Annex E).
NOTE 15:
Enumeration of supported PTP delay mechanisms. Allowed values as defined in IEEE Std 1588-2019 [126] clause 8.2.15.4.4.
NOTE 16:
Indicates whether DS-TT supports acting as a PTP grandmaster.
NOTE 17:
Indicates whether DS-TT supports acting as a gPTP grandmaster.
NOTE 18:
Enumeration of supported PTP profiles, each identified by PTP profile ID, as defined in IEEE Std 1588-2019 [126] clause 20.3.3.
NOTE 19:
PTP profile to apply, identified by PTP profile ID, as defined in IEEE Std 1588-2019 [126] clause 20.3.3.
NOTE 20:
Transport type to use. Allowed values: IPv4 (as defined in IEEE Std 1588-2019 [126] Annex C), IPv6 (as defined in IEEE Std 1588-2019 [126] Annex D), Ethernet (as defined in IEEE Std 1588-2019 [126] Annex E).
NOTE 21:
Indicates whether to act as grandmaster or not, i.e. whether to send Announce, Sync and optionally Follow_Up messages.
NOTE 22:
The IEEE Std 802.1AS [104] data sets apply if the IEEE 802.1AS PTP profile is used; otherwise the IEEE Std 1588-2019 [126] data sets apply.
Bridge management information Supported
operations by
TSN AF
(1)
Reference
Information for 5GS Bridge
Bridge AddressR
Bridge IDR
NW-TT port numbersR
Traffic forwarding information
Static Filtering Entry (3)RW IEEE Std 802.1Q [98] clause 8.8.1
General Neighbor discovery configuration (2)
adminStatusRW IEEE 802.1AB [97] clause 9.2.5.1
lldpV2LocChassisIdSubtypeRW IEEE 802.1AB [97] Table 11-2
lldpV2LocChassisIdRW IEEE 802.1AB [97] Table 11-2
lldpV2MessageTxIntervalRW IEEE 802.1AB [97] Table 11-2
lldpV2MessageTxHoldMultiplierRW IEEE 802.1AB [97] Table 11-2
DS-TT port neighbor discovery configuration for DS-TT ports (4)
>>DS-TT port neighbor discovery configuration for each DS-TT port
>> DS-TT port numberRW
>> lldpV2LocPortIdSubtypeRW IEEE 802.1AB [97] Table 11-2
>> lldpV2LocPortIdRW IEEE 802.1AB [97] Table 11-2
Discovered neighbor information for DS-TT ports (4)
>Discovered neighbor information for each DS-TT port (4)
>> DS-TT port numberR
>> lldpV2RemChassisIdSubtypeR IEEE 802.1AB [97] Table 11-2
>> lldpV2RemChassisIdR IEEE 802.1AB [97] Table 11-2
>> lldpV2RemPortIdSubtypeR IEEE 802.1AB [97] Table 11-2
>> lldpV2RemPortIdR IEEE 802.1AB [97] Table 11-2
>> TTLR IEEE 802.1AB [97] clause 8.5.4.1
Stream Parameters (5)
MaxStreamFilterInstancesR IEEE Std 802.1Q [98]
MaxStreamGateInstancesR IEEE Std 802.1Q [98]
MaxFlowMeterInstancesR IEEE Std 802.1Q [98]
SupportedListMaxR IEEE Std 802.1Q [98]
Time synchronization information
Supported PTP instance types (6)R
Supported transport types (7)R
Supported delay mechanisms (8)R
PTP grandmaster capable (9)R
gPTP grandmaster capable (10)R
Supported PTP profiles (11)R
Number of supported PTP instancesR
Grandmaster candidate enabledRW
Time synchronization information for DS-TT ports
> Time synchronization information for each DS-TT port
> DS-TT port numberRW
>> Time synchronization information for each PTP Instance
>> PTP Instance IDRW
>> PTP profile (12)RW
>> Transport type (13)RW
>> Grandmaster on behalf of DS-TT enabled (14)RW
IEEE Std 1588-2019 [126] data sets (15)
>> defaultDS.clockIdentityRWIEEE Std 1588-2019 [126] clause 8.2.1.2.2
>> defaultDS.clockQuality.clockClassRWIEEE Std 1588-2019 [126] clause 8.2.1.3.1.2
>> defaultDS.clockQuality.clockAccuracyRWIEEE Std 1588-2019 [126] clause 8.2.1.3.1.3
>> defaultDS.clockQuality.offsetScaledLogVarianceRWIEEE Std 1588-2019 [126] clause 8.2.1.3.1.4
>> defaultDS.priority1RWIEEE Std 1588-2019 [126] clause 8.2.1.4.1
>> defaultDS.priority2RWIEEE Std 1588-2019 [126] clause 8.2.1.4.2
>> defaultDS.domainNumberRWIEEE Std 1588-2019 [126] clause 8.2.1.4.3
>> defaultDS.sdoIdRWIEEE Std 1588-2019 [126] clause 8.2.1.4.5
>> defaultDS.instanceEnableRWIEEE Std 1588-2019 [126] clause 8.2.1.5.2
>> defaultDS.externalPortConfigurationEnabledRWIEEE Std 1588-2019 [126] clause 8.2.1.5.3
>> defaultDS.instanceTypeRWIEEE Std 1588-2019 [126] clause 8.2.1.5.5
>> portDS.portIdentityRWIEEE Std 1588-2019 [126] clause 8.2.15.2.1
>> portDS.portStateRIEEE Std 1588-2019 [126] clause 8.2.15.3.1
>> portDS.logMinDelayReqIntervalRWIEEE Std 1588-2019 [126] clause 8.2.15.3.2
>> portDS.logAnnounceIntervalRWIEEE Std 1588-2019 [126] clause 8.2.15.4.1
>> portDS.announceReceiptTimeoutRWIEEE Std 1588-2019 [126] clause 8.2.15.4.2
>> portDS.logSyncIntervalRWIEEE Std 1588-2019 [126] clause 8.2.15.4.3
>> portDS.delayMechanismRWIEEE Std 1588-2019 [126] clause 8.2.15.4.4
>> portDS.logMinPdelayReqIntervalRWIEEE Std 1588-2019 [126] clause 8.2.15.4.5
>> portDS.versionNumberRWIEEE Std 1588-2019 [126] clause 8.2.15.4.6
>> portDS.minorVersionNumberRWIEEE Std 1588-2019 [126] clause 8.2.15.4.7
>> portDS.delayAssymetryRWIEEE Std 1588-2019 [126] clause 8.2.15.4.8
>> portDS.portEnableRWIEEE Std 1588-2019 [126] clause 8.2.15.5.1
>> timePropertiesDS.currentUtcOffsetRWIEEE Std 1588-2019 [126] clause 8.2.4.2
>> timePropertiesDS.timeSourceRWIEEE Std 1588-2019 [126] clause 8.2.4.9
>> externalPortConfigurationPortDS.desiredStateRWIEEE Std 1588-2019 [126] clause 15.5.3.7.15.1
IEEE Std 802.1AS [104] data sets (15)
>> defaultDS.clockIdentityRWIEEE Std 802.1AS [104] clause 14.2.2
>> defaultDS.clockQuality.clockClassRWIEEE Std 802.1AS [104] clause 14.2.4.2
>> defaultDS.clockQuality.clockAccuracyRWIEEE Std 802.1AS [104] clause 14.2.4.3
>> defaultDS.clockQuality.offsetScaledLogVarianceRWIEEE Std 802.1AS [104] clause 14.2.4.4
>> defaultDS.priority1RWIEEE Std 802.1AS [104] clause 14.2.5
>> defaultDS.priority2RWIEEE Std 802.1AS [104] clause 14.2.6
>> defaultDS.timeSourceRWIEEE Std 802.1AS [104] clause 14.2.15
>> defaultDS.domainNumberRWIEEE Std 802.1AS [104] clause 14.2.16
>> defaultDS.externalPortConfigurationEnabledRWIEEE Std 802.1AS [104] clause 14.2.18
>> defaultDS.sdoIdRWIEEE Std 802.1AS [104] clause 14.2.4.3
>> defaultDS.instanceEnableRWIEEE Std 802.1AS [104] clause 14.2.19
>> portDS.portIdentityRWIEEE Std 802.1AS [104] clause 14.8.2
>> portDS.portStateRIEEE Std 802.1AS [104] clause 14.8.3
>> portDS.ptpPortEnabledRWIEEE Std 802.1AS [104] clause 14.8.4
>> portDS.delayMechanismRWIEEE Std 802.1AS [104] clause 14.8.5
>> portDS.isMeasuringDelayRIEEE Std 802.1AS [104] clause 14.8.6
>> portDS.asCapableRIEEE Std 802.1AS [104] clause 14.8.7
>> portDS.meanLinkDelayRIEEE Std 802.1AS [104] clause 14.8.8
>> portDS.meanLinkDelayThreshRWIEEE Std 802.1AS [104] clause 14.8.9
>> portDS.delayAssymetryRWIEEE Std 802.1AS [104] clause 14.8.10
>> portDS.neighborRateRatioRIEEE Std 802.1AS [104] clause 14.8.11
>> portDS.initialLogAnnounceIntervalRWIEEE Std 802.1AS [104] clause 14.8.12
>> portDS.currentLogAnnounceIntervalRIEEE Std 802.1AS [104] clause 14.8.13
>> portDS.useMgtSettableLogAnnounceIntervalRWIEEE Std 802.1AS [104] clause 14.8.14
>> portDS.mgtSettableLogAnnounceIntervalRWIEEE Std 802.1AS [104] clause 14.8.15
>> portDS.announceReceiptTimeoutRWIEEE Std 802.1AS [104] clause 14.8.16
>> portDS.initialLogSyncIntervalRWIEEE Std 802.1AS [104] clause 14.8.17
>> portDS.currentLogSyncIntervalRIEEE Std 802.1AS [104] clause 14.8.18
>> portDS.useMgtSettableLogSyncIntervalRWIEEE Std 802.1AS [104] clause 14.8.19
>> portDS.mgtSettableLogSyncIntervalRWIEEE Std 802.1AS [104] clause 14.8.20
>> portDS.syncReceiptTimeoutRWIEEE Std 802.1AS [104] clause 14.8.21
>> portDS.syncReceiptTimeoutTimeIntervalRWIEEE Std 802.1AS [104] clause 14.8.22
>> portDS.initialLogPdelayReqIntervalRWIEEE Std 802.1AS [104] clause 14.8.23
>> portDS.currentLogPdelayReqIntervalRIEEE Std 802.1AS [104] clause 14.8.24
>> portDS.useMgtSettableLogPdelayReqIntervalRWIEEE Std 802.1AS [104] clause 14.8.25
>> portDS.mgtSettableLogPdelayReqIntervalRWIEEE Std 802.1AS [104] clause 14.8.26
>> portDS.initialLogGptpCapableMessageIntervalRWIEEE Std 802.1AS [104] clause 14.8.27
>> portDS.currentLogGptpCapableMessageIntervalRIEEE Std 802.1AS [104] clause 14.8.28
>> portDS.useMgtSettableLogGptpCapableMessageIntervalRWIEEE Std 802.1AS [104] clause 14.8.29
>> portDS.mgtSettableLogGptpCapableMessageIntervalRWIEEE Std 802.1AS [104] clause 14.8.30
>> portDS.initialComputeNeighborRateRatioRWIEEE Std 802.1AS [104] clause 14.8.31
>> portDS.currentComputeNeighborRateRatioRIEEE Std 802.1AS [104] clause 14.8.32
>> portDS.useMgtSettableComputeNeighborRateRatioRWIEEE Std 802.1AS [104] clause 14.8.33
>> portDS.mgtSettableComputeNeighborRateRatioRWIEEE Std 802.1AS [104] clause 14.8.34
>> portDS.initialComputeMeanLinkDelayRWIEEE Std 802.1AS [104] clause 14.8.35
>> portDS.currentComputeMeanLinkDelayRIEEE Std 802.1AS [104] clause 14.8.36
>> portDS.useMgtSettableComputeMeanLinkDelayRWIEEE Std 802.1AS [104] clause 14.8.37
>> portDS.mgtSettableComputeMeanLinkDelayRWIEEE Std 802.1AS [104] clause 14.8.38
>> portDS.allowedLostResponsesRWIEEE Std 802.1AS [104] clause 14.8.39
>> portDS.allowedFaultsRWIEEE Std 802.1AS [104] clause 14.8.40
>> portDS.gPtpCapableReceiptTimeoutRWIEEE Std 802.1AS [104] clause 14.8.41
>> portDS.versionNumberRWIEEE Std 802.1AS [104] clause 14.8.42
>> portDS.nupRWIEEE Std 802.1AS [104] clause 14.8.43
>> portDS.ndownRWIEEE Std 802.1AS [104] clause 14.8.44
>> portDS.oneStepTxOperRIEEE Std 802.1AS [104] clause 14.8.45
>> portDS.oneStepReceiveRIEEE Std 802.1AS [104] clause 14.8.46
>> portDS.oneStepTransmitRIEEE Std 802.1AS [104] clause 14.8.47
>> portDS.initialOneStepTxOperRWIEEE Std 802.1AS [104] clause 14.8.48
>> portDS.currentOneStepTxOperRWIEEE Std 802.1AS [104] clause 14.8.49
>> portDS.useMgtSettableOneStepTxOperRWIEEE Std 802.1AS [104] clause 14.8.50
>> portDS.mgtSettableOneStepTxOperRWIEEE Std 802.1AS [104] clause 14.8.51
>> portDS.syncLockedRIEEE Std 802.1AS [104] clause 14.8.52
>> portDS.pdelayTruncatedTimestampsArrayRWIEEE Std 802.1AS [104] clause 14.8.53
>> portDS.minorVersionNumberRWIEEE Std 802.1AS [104] clause 14.8.54
>> timePropertiesDS.currentUtcOffsetRWIEEE Std 802.1AS [104] clause 14.5.2
>> externalPortConfigurationPortDS.desiredStateRWIEEE Std 802.1AS [104] clause 14.12.2
NOTE 1:
R = Read only access; RW = Read/Write access.
NOTE 2:
General neighbor discovery information is included only when NW-TT performs neighbor discovery on behalf of DS-TT. When a parameter in this group is changed, it is necessary to provide the change to every DS-TT and the NW-TT that belongs to the 5GS TSN bridge.
NOTE 3:
If the Static Filtering Entry information is present for uplink traffic, UPF/NW-TT uses Static Filtering Entry information to determine the NW-TT egress port for forwarding UL TSC traffic. The user plane forwarding is further specified in clause 5.8.2.5.3.
NOTE 4:
DS-TT discovery configuration and DS-TT discovery information are used only when DS-TT does not support LLDP and NW-TT performs neighbor discovery on behalf of DS-TT.
NOTE 5:
TSN AF indicates the support for PSFP to the CNC only if each DS-TT and NW-TT of the 5GS bridge have indicated support of PSFP. The support of PSFP at the NW-TT ports is expressed by setting higher than zero values for MaxStreamFilterInstances, MaxStreamGateInstances, MaxFlowMeterInstances, SupportedListMax parameters.
NOTE 6:
Enumeration of supported PTP instance types. Allowed values as defined in IEEE Std 1588-2019 [126] clause 8.2.1.5.5.
NOTE 7:
Enumeration of supported transport types. Allowed values: IPv4 (as defined in IEEE Std 1588-2019 [126] Annex C), IPv6 (as defined in IEEE Std 1588-2019 [126] Annex D), Ethernet (as defined in IEEE Std 1588-2019 [126] Annex E).
NOTE 8:
Enumeration of supported PTP delay mechanisms. Allowed values as defined in IEEE Std 1588-2019 [126] clause 8.2.15.4.4.
NOTE 9:
Indicates whether NW-TT supports acting as a PTP grandmaster.
NOTE 10:
Indicates whether NW-TT supports acting as a gPTP grandmaster.
NOTE 11:
Enumeration of supported PTP profiles, each identified by PTP profile ID, as defined in IEEE Std 1588-2019 [126] clause 20.3.3.
NOTE 12:
PTP profile to apply, identified by PTP profile ID, as defined in IEEE Std 1588-2019 [126] clause 20.3.3.
NOTE 13:
Transport type to use. Allowed values: IPv4 (as defined in IEEE Std 1588-2019 [126] Annex C), IPv6 (as defined in IEEE Std 1588-2019 [126] Annex D), Ethernet (as defined in IEEE Std 1588-2019 [126] Annex E).
NOTE 14:
Indicates whether to act as grandmaster on behalf of a DS-TT port or not if 5GS is determined to be the grandmaster clock, i.e. whether to send Announce, Sync and optionally Follow_Up messages on behalf of DS-TT.
NOTE 15:
The IEEE Std 802.1AS [104] data sets apply if the IEEE 802.1AS PTP profile is used; otherwise the IEEE Std 1588-2019 [126] data sets apply.
Exchange of port and bridge management information between TSN AF or NEF and NW-TT or between TSN AF or NEF and DS-TT allows TSN AF or NEF to:
  1. retrieve port management information for a DS-TT or NW-TT Ethernet port or bridge management information for a 5GS TSN bridge;
  2. send port management information for a DS-TT or NW-TT Ethernet port or bridge management information for a 5GS TSN bridge;
  3. subscribe to and receive notifications if specific port management information for a DS-TT or NW-TT Ethernet port changes or bridge management information changes.
Exchange of port management information between TSN AF or NEF and NW-TT or DS-TT is initiated by DS-TT or NW-TT to:
  • notify TSN AF if port management information has changed that TSN AF has subscribed for.
Exchange of bridge management information between TSN AF and NW-TT is initiated by NW-TT to:
  • notify TSN AF or NEF if bridge management information has changed that TSN AF or NEF has subscribed for.
Exchange of port management information is initiated by DS-TT to:
  • provide port management capabilities, i.e. provide information indicating which standardized and deployment-specific port management information is supported by DS-TT.
TSN AF or NEF indicates inside the Port Management Information Container or Bridge Management Information Container whether it wants to retrieve or send port or bridge management information or intends to (un-)subscribe for notifications.
Up

5.28.3.2  Transfer of port or bridge management informationWord‑p. 302
Port management information is transferred transparently via 5GS between TSN AF or NEF and DS-TT or NW-TT, respectively, inside a Port Management Information Container (PMIC). Bridge management information is transferred transparently via 5GS between TSN AF or NEF and NW-TT inside a Bridge Management Information Container (BMIC). The transfer of port or bridge management information is as follows:
  • To convey port management information from DS-TT or NW-TT to TSN AF or NEF:
    • DS-TT provides a PMIC and the DS-TT port MAC address (if available) to the UE, which includes the PMIC as an optional Information Element of an N1 SM container and triggers the UE requested PDU Session Establishment procedure or PDU Session Modification procedure to forward the PMIC to the SMF. SMF forwards the PMIC and the port number of the related DS-TT Ethernet port to TSN AF or NEF as described in TS 23.502, clause 4.3.3.2;
    • NW-TT provides PMIC(s) and/or BMIC to the UPF, which triggers the N4 Session Level Reporting Procedure to forward the PMIC(s) and/or BMIC to SMF. UPF selects an N4 session corresponding to any of the N4 sessions for this NW-TT. SMF in turn forwards the PMIC(s) and the port number(s) of the related NW-TT port(s), or the BMIC, to TSN AF or NEF as described in TS 23.502, clause 4.16.5.1.
  • To convey port management information from TSN AF or NEF to DS-TT:
    • TSN AF or NEF provides a PMIC, MAC address or UE IP address reported for a PDU Session (i.e. MAC address of the DS-TT port or IP address related to the PDU session) and the port number of the Ethernet port to manage to the PCF by using the AF Session level Procedure, which forwards the information to SMF based on the MAC or IP address using the PCF initiated SM Policy Association Modification procedure as described in TS 23.502, clause 4.16.5.2. SMF determines that the port number relates to a DS-TT Ethernet port and based on this forwards the PMIC to DS-TT using the network requested PDU Session Modification procedure as described in TS 23.502, clause 4.3.3.2.
  • To convey port or bridge management information from TSN AF or NEF to NW-TT:
    • TSN AF or NEF selects a PCF-AF session corresponding to any of the DS-TT MAC or IP addresses for the related PDU sessions of this bridge and provides a PMIC(s) and the related NW-TT port number(s) and/or BMIC to the PCF. The PCF uses the PCF initiated SM Policy Association Modification procedure to forward the information received from TSN AF or NEF to SMF as described in TS 23.502, clause 4.16.5.2. SMF determines that the included information needs to be delivered to the NW-TT either by determining that the port number(s) relate(s) to a NW-TT Ethernet port(s) or based on the presence of BMIC, and forwards the container(s) and/or related port number(s) to NW-TT using the N4 Session Modification procedure described in TS 23.502, clause 4.4.1.3.
Up

5.28.3.3  VLAN Configuration InformationWord‑p. 303
The CNC obtains the 5GS bridge VLAN configuration from TSN AF according to IEEE Std 802.1Q [98] clause 12.10.1.1. The TSN AF and UPF/NW-TT are pre-configured with same 5GS bridge VLAN configuration.

5.28.4  QoS mapping tables

The mapping tables between the traffic class and 5GS QoS Profile is provisioned and further used to find suitable 5GS QoS profile to transfer TSN traffic over the PDU Session. QoS mapping procedures are performed in two phases: (1) QoS capability report phase as described in clause 5.28.1, and (2) QoS configuration phase as in clause 5.28.2
  1. The TSN AF shall be pre-configured (e.g. via OAM) with a mapping table. The mapping table contains TSN traffic classes, pre-configured bridge delays (i.e. the preconfigured delay between UE and UPF/NW-TT) and priority levels. Once the PDU session has been setup and after retrieving the information related to UE-DS-TT residence time, the TSN AF deduces the port pair(s) in the 5GS bridge and determines the bridge delay per port pair per traffic class based on the pre-configured bridge delay and the UE-DS-TT residence time as described in clause 5.27.5. The TSN AF updates bridge delays per port pair and traffic class and reports the bridge delays and other relevant TSN information such as the Traffic Class Table (clause 12.6.3 in IEEE Std 802.1Q [98]) for every port, according to the IEEE Std 802.1Q [98] and IEEE Std 802.1Qcc [95] to the CNC.
  2. CNC may distribute PSFP information and transmission gate scheduling parameters to 5GS Bridge via TSN AF, which can be mapped to TSN QoS requirements by the TSN AF.
The PCF mapping table provides a mapping from TSN QoS information (see TS 23.503, clauses 6.2.1.2 and 6.1.3.23) to 5GS QoS profile. Based on trigger from TSN AF, the PCF may trigger PDU session modification procedure to establish a new 5G QoS Flow or use the pre-configured 5QI for 5G QoS Flow for the requested traffic class according to the selected QoS policies and the TSN AF traffic requirements.
Figure 5.28.4-1 illustrates the functional distribution of the mapping tables.
Reproduction of 3GPP TS 23.501, Figure 5.28.4-1: QoS Mapping Function distribution between PCF and TSN AF
Up
The minimum set of TSN QoS-related parameters that are relevant for mapping the TSN QoS requirements are used by the TSN AF: traffic classes and their priorities per port, TSC Burst Size of TSN streams, 5GS bridge delays per port pair and traffic class (independentDelayMax, independentDelayMin, dependentDelayMax, dependentDelayMin), propagation delay per port (txPropagationDelay) and UE-DS-TT residence time.
Once the CNC retrieves the necessary information, it proceeds to calculate scheduling and paths. The configuration information is then set in the bridge as described in clauses 5.28.2 and 5.28.3. The most relevant information received is the PSFP information and the schedule of transmission gates for every traffic class and port of the bridge. At this point, it is possible to retrieve the TSN QoS requirements by identifying the traffic class of the TSN stream. The traffic class to TSN QoS and delay requirement mapping can be performed using the QoS mapping table in the TSN AF as specified in TS 23.503. Subsequently in the PCF, the 5G QoS Flow can be configured by selecting a 5QI as specified in TS 23.503. This feedback approach uses the reported information to the CNC and the feedback of the configuration information coming from the CNC to perform the mapping and configuration in the 5GS.
If the Maximum Burst Size of the aggregated TSC streams in the traffic class is provided by CNC via TSN AF to PCF, PCF can derive the required MDBV taking the Maximum Burst Size as input. If the default MDBV associated with a standardized 5QI or a pre-configured 5QI in the QoS mapping table cannot satisfy the aggregated TSC Burst Size, the PCF provides the derived MDBV in the PCC rule and then the SMF performs QoS Flow binding as specified in clause 6.1.3.2.4 of TS 23.503.
Maximum Flow Bit Rate is calculated over PSFPAdminCycleTime as described in Annex I and provided by the TSN AF to the PCF. The PCF sets the GBR and MBR values to the Maximum Flow Bitrate value.
The Maximum Flow Bit Rate is adjusted according to Averaging Window associated with a pre-configured 5QI in the QoS mapping table or another selected 5QI (as specified in TS 23.503) to obtain GBR of the 5GS QoS profile. GBR is then used by SMF to calculate the GFBR per QoS flow. QoS mapping table in the PCF between TSN parameters and 5GS parameters should match the delay, aggregated TSC burst size and priority, while preserving the priorities in the 5GS. An operator enabling TSN services via 5GS can choose up to eight traffic classes to be mapped to 5GS QoS profiles.
Once the 5QIs to be used for TSN streams are identified by the PCF as specified in TS 23.503, then it is possible to enumerate as many bridge port traffic classes as the number of selected 5QIs.
When PSFP information is not available to the TSN AF for a given TSN stream (e.g. because of lack of PSFP support in the DS-TTs or the NW-TTs, or exceeding the number of supported table entries for PSFP functions, or because CNC does not provide PSFP information), the 5GS can support the TSN streams using pre-configured mapping from stream priority (i.e. PCP as defined in IEEE Std 802.1Q [98]) to QoS flows.
Up


Up   Top   ToC