One day about one year ago, Mark recognized a strange change of a small region of his skin on his right arm. As it didn't dissolve within some weeks and he even observed some progression, he made an appointment at Dr. Good, a dermatologist in the large city next to his home town. Although he was rather flexible, it took about 6 weeks to get one and as it was in the middle of the day, he had to take one day off work to drive there. All in all, this first appointment took almost all day long including driving, waiting and the examination, which was a small biopsy surgery. About one week later he called Dr. Good's practice for the result and was told that it was in fact white skin cancer which afforded a surgical removal. Two weeks later the surgery was carried out successfully and the dermatologist suggested a quarterly screening to monitor the healing process and check for further lesions. When Mark pointed out that each screening necessarily means a whole day off work for him, his dermatologist suggested to make use of the new mobile specialist practice (MSP), for which Dr. Better - a good friend of him and an experienced dermatologist, too - works as a remote expert regularly.
A few weeks later, Mark called the phone number that was given to him by his dermatologist. He also had agreed that his patient data including the report on his recent surgery have been uploaded to his private medical data account and made accessible for Dr. Better. After a very short phone interview he got a 10 o'clock appointment for a skin cancer screening carried out at a mobile specialist practice (MSP) only about 3km away from his work office. The day of his examination he left his office and went to the MSP by bike. Arriving there, a paramedic already awaited him, the video/audio examination room was prepared and Dr. Better, the remote expert, was online. Due to the information provided in Mark's medical data account, Dr. Better was well prepared and knew about Mark's previous surgery. After a short introduction and some brief information about the following procedure, the visual whole-body screening started. Mark followed the instructions given by Dr. Better including the placement of a haptic manipulator on the location of his recent surgery. After remotely palpating this area the examination was finished without any new findings. Dr. Better explained the examination results to Mark and gave him some recommendations on skin care especially for the location of his recent surgery. Based on the video stream a documentation of the screening in order to compare to future changes was created automatically and added to Mark's medical data record. Mark left and was back at his office shortly after 10:30, being sure to use the MSP again for his next regular screening.
The mobile specialist practice arrives at the predefined location with a community owned non-public-network access point and connects to it. Based on a service level agreement the data links needed according to the day's schedule are allocated for the MSP. At 10 am, a visual whole-body skin cancer screening is scheduled and the required resources are allocated and connected to the NPN wireless network.
-
In the video/audio examination room, a stereoscopic video camera with optical zooming produces a 4K video stream while an audio system enables EVS full band voice communication with the remote specialist. The video (stereoscopic 4K 60 fps 12 bits per pixel color coded (e.g. YUV 4:1:1) real time, loss less compressed video) and the audio stream (up to 128 kbit/s) are relayed by the MSP to the remote specialist located in the next urban hospital center. A second video stream with lossy compression from remote expert to the MSP is available to ease communication with the patient via a 4K monitor in the MSP's examination room. A haptic feedback tool for remote palpating is connected via a low latency link with 2 Mbit/s from network to UE and 16 Mbit/s from UE to network.
-
Resources assigned for the communication services allocated to the skin cancer screening are released after the examination.
At 10:30 am a knee MRI scan and an abdominal ultrasound are planned.
-
New resources for the next examination(s) are allocated:
-
for the MRI scan, a standard video conferencing link, a 50 Mbit/s low latency link to share the scanner's console and a 240 Mbit/s broadband link to upload a 300 Mbyte DICOM file in less than 10 seconds are allocated. The remote radiologist gives a brief introduction to the patient and some scan instructions to the MTA. After the scan has finished, the raw data are processed in the MSP and a complete DICOM data set is uploaded to the remote specialist for immediate diagnosis.
-
for the ultrasound examination, which is done in parallel, a second standard video conferencing link and a 160 Mbit/s link to transmit an uncompressed 512x512 pixels 32 bits 20 fps video stream from an ultra-sound probe are allocated. The remote specialist gives a brief introduction to the patient and continuous scanning instructions to the paramedic in the MSP. The diagnosis is given during or immediately after the examination via the video conferencing link.
-
Resources assigned for the communication services allocated to MRI scan and the ultrasound examination are released after the examination.
Other examinations such as CT-scan, blood analysis follow a similar, respective service flow.
Each medical device contains a 5G UE. Each medical device may connect to the 5G network directly, or the medical devices connect to the local 5G non-public network of the mobile specialist practice. The mobile specialist practice has a connection to the 5G network (private slice) for the connection to remote specialists etc.