Tech-invite3GPPspaceIETFspace
21222324252627282931323334353637384‑5x
Top   in Index   Prev   Next

TS 26.114
IMS Multimedia Telephony –
Media Handling and Interaction

V19.1.0 (Wzip)2025/06  517 p.
V18.11.0 (PDF)2025/06  … p.
V17.9.0  2024/12  493 p.
V16.13.0  2023/03  460 p.
V15.8.0  2021/03  412 p.
V14.12.0  2021/03  406 p.
V13.11.0  2021/03  379 p.
V12.17.0  2019/06  315 p.
V11.12.0  2016/09  277 p.
V10.11.0  2016/09  275 p.
V9.15.0  2016/09  233 p.
V8.15.0  2016/09  169 p.
V7.17.0  2012/06  127 p.
Rapporteur:
Dr. Yang, Hyun-koo
Samsung Electronics Co., Ltd

essential Table of Contents for  TS 26.114  Word version:  19.1.0

each title, in the "available" or "not available yet" area, links to the equivalent title in the CONTENT
Here   Top

Up   Top

List of Figures and Tables

Figure 4.1High-level architecture Figure showing two MTSI clients in terminals using 3GPP access involved in an MTSI call set-up. The terminals connect to the IMS network over a 3GPP radio access network.
Figure 4.2Functional components of a terminal including an MTSI client in terminal using 3GPP access
Figure 4.3User plane protocol stack for a basic MTSI client
Table 6.1SDP parameters for AMR-NB or AMR-WB, when the MTSI client in terminal offers the bandwidth-efficient payload format
Table 6.2SDP parameters for AMR-NB or AMR-WB, when the MTSI client in terminal offers the octet-aligned payload format
Table 6.2aSDP parameters for EVS (both Primary and AMR-WB IO modes, when the MTSI client in terminal offers EVS
Table 6.2bSDP parameters for IVAS (including EVS Primary and EVS AMR-WB IO modes)
Table 6.3Handling of the AMR-NB and AMR-WB SDP parameters in the received SDP offer and in the SDP answer
Table 6.3aHandling of SDP parameters common to EVS Primary and EVS AMR-WB IO in the received SDP offer and in the SDP answer
Table 6.3bHandling of the EVS Primary SDP parameters in the received SDP offer and in the SDP answer
Table 6.3cSDP parameters for the EVS AMR-WB IO parameters in the received SDP offer and in the SDP answer
Table 6.4SDP parameters for AMR-NB or AMR-WB for SDP answer when the SDP offer is received from another MTSI client in terminal
Table 6.5Expected configuration of SDP parameters for AMR-NB or AMR-WB in an SDP offer from an MTSI MGW inter-working with CS GERAN/UTRAN
Table 6.6SDP parameters for AMR-NB or AMR-WB for SDP answer when the SDP offer is received from another MTSI MGW
Table 6.7Handling of the IVAS Immersive SDP parameters in the received SDP offer and in the SDP answer
Table 6.7b=AS for each codec mode of AMR when ptime is 20
Table 6.8b=AS for each codec mode of AMR-WB when ptime is 20
Table 6.9b=AS for each bit-rate of EVS Primary mode when ptime is 20
Table 6.10-1Recommended bandwidth properties for AMR to be used with the 'a=bw-info' attribute when codec modes up to 12.2 are negotiated
Table 6.10-2Recommended bandwidth properties for AMR-WB to be used with the 'a=bw-info' attribute when codec modes up to 12.65 are negotiated
Table 6.10-3Recommended bandwidth properties for EVS to be used with the 'a=bw-info' attribute when codec modes up to 13.2 are negotiated
Figure 6.2.7.4.4-1Illustration of 3gpp-qos-hint "loss" UE-to-UE offer/answer
Figure 6.2.7.4.4-2Illustration of 3gpp-qos-hint "loss" UE-to-Network offer/answer
Table 6.2.7.4.5-1Resulting summary of QoS hint values from SDP answer
Figure 6.2.10.1-1Data Channel Workflow
Table 6.2.10.1-2Bootstrap Data Channel Content Sources
Figure 6.2.10.1-3Distribution of local data channel application to both UE
Table 7.1Encapsulation parameters (to be used as defined above)
Table 7.2Rotation signalling for 2 bit granularity
Table 7.3Rotation signalling for 6 bit granularity
Figure 8.1Example structure of an MTSI speech receiver
Figure 8.2Example showing the relation between the reference delay algorithm and the CDF threshold - the delay and error profile 4 in table 8.1 has been used
Table 8.1Delay and error profile overview - The channels are attached electronically
Table 8.2Input files for JBM performance evaluation - The files are attached electronically
Table 9.1Recommended codec modes and redundancy level combinations when redundancy is supported
Figure 9.1Redundant and non-redundant frames in the case of 100% redundancy, when the original packing is 1 frame per packet
Table 9.2Example frame encapsulation with different redundancy levels and when maxptime is 240
Figure 9.2Redundant and non-redundant frames in the case of 100% redundancy, when the original packing is 2 frames per packet
Figure 9.3Redundant and non-redundant frames in the case of 100% redundancy, when the original packing is 1 frame per packet and when the redundancy is transmitted with an offset of 20 ms
Table 10.1Configuration parameters when ECN is used as a trigger
Figure 10.1RTCP-APP formatting
Figure 10.2Basic syntax of the application-dependent data fields when only ID is used
Figure 10.2aPadding
Figure 10.3Redundancy request
Figure 10.4Frame aggregation request
Figure 10.5Codec mode request
Figure 10.6Visualization of how the different adaptation requests affect the encoding and the payload packetization
Figure 10.6aEVS primary rate request
Table 10.1aEncoding of the DATA field in the EVS Primary Rate Request
Figure 10.6bEVS bandwidth request
Figure 10.6dEVS partial redundancy request
Table 10.1.bEncoding of the DATA field in the EVS Channel Aware Request
Figure 10.6eEVS primary mode to EVS AMR-WB IO mode switching request
Figure 10.6fEVS AMR-WB IO mode to EVS Primary mode Switching request
Figure 10.6gIVAS Coded Format request
Table 10.1.cEncoding of the DATA field in the IVAS Coded Format Request
Figure 10.6hIVAS Bit Rate request
Table 10.1.dEncoding of the DATA field in the IVAS Bit Rate Request
Figure 10.7Flow of parameter sets for encoded frames
Figure 10.8Default frame aggregation with one frame per packet
Figure 10.9Payload packetization with 100% redundancy and an offset of one packet
Figure 10.10Payload packetization with 100% redundancy and an extra offset of one packet
Figure 10.11Payload packetization with 2 frames aggregated per packet
Figure 10.12Payload packetization with 100% redundancy and 2 frames aggregated per packet
Figure 10.13Payload packetization with 100% redundancy, one extra offset and 2 frames aggregated per packet
Table 10.2Configuration parameters when ECN is used as a trigger
Figure 10.7-1Uplink bitrate decrease based on ANBR
Figure 10.7-2Uplink bitrate increase based on ANBR
Figure 10.7-3Downlink bitrate decrease based on ANBR through application signaling
Figure 10.7-4Downlink bitrate increase based on ANBR through application signaling
Figure 11.1Interface for testing acoustic properties of a terminal used for MTSI
Table 12.1Recommended encapsulation parameters
Figure 15.1MTSI network preference management object tree
Table 15.1Example configuration of MTSINP for speech session
Table 15.2Example configuration of MTSINP for text session
Table 15.3Example configuration of MTSINP for video session
Figure 16.1MTSI QoE metrics management object tree
Figure 16.5.1-1Example signalling diagram for UMTS
Figure 16.5.1-2Example signalling diagram for LTE
Figure 16.5.1-3Example signalling diagram for NR
Figure 17.1MTSI media adaptation management object tree
Table 17.1Speech adaptation parameters of 3GPP MTSIMA MO
Table 17.2Video adaptation parameters of 3GPP MTSIMA MO
Figure 17.2High and Low PLR thresholds for media robustness adaptation
Table 18.4.3-1Recommended payload type numbers
Table A.1.1SDP example
Table A.1.2SDP example: one-phase approach
Table A.1.3SDP example: 1st phase SDP offer
Table A.1.4SDP example: 2nd phase SDP offer
Table A.1.5SDP example
Table A.1.6SDP example
Table A.2.1SDP example
Table A.2.2SDP example
Table A.2.3SDP example
Table A.2.4SDP example
Table A.3.0SDP example
Table A.3.1SDP example
Table A.3.1aSDP answer example with AVP
Table A.3.2SDP example
Table A.3.3SDP example
Table A.3.3aSDP example
Table A.3.3bSDP example
Table A.3.4SDP example
Table A.3.4aSDP example
Table A.3.5SDP example
Table A.3.6SDP example
Table A.4.2a1Example SDP offer for H.264/AVC
Table A.4.2a2Example SDP answer
Table A.4.2b.1Example SDP offer with High Granularity
Table A.4.2b.2Example SDP answer with High Granularity
Table A.4.2c.1Example SDP offer with Retransmission
Table A.4.2c.2Example SDP answer with Retransmission
Table A.4.2d.1Example SDP offer with FEC
Table A.4.2d.2Example SDP answer with FEC
Table A.4.2e.1Example SDP offer with 'Arbitrary ROI' and 'Sent ROI'
Table A.4.2e.2Example SDP answer with 'Arbitrary ROI' and 'Sent ROI'
Table A.4.2e.3Example SDP offer with 'Pre-defined ROI' and 'Sent ROI'
Table A.4.2e.4Example SDP answer with 'Pre-defined ROI' and 'Sent ROI'
Table A.4.2e.5Example SDP offer with FECC, 'Arbitrary ROI' and 'Sent ROI'
Table A.4.2e.6Example SDP answer with FECC, 'Arbitrary ROI' and 'Sent ROI'
Table A.4.2e.7Example SDP offer with FECC, 'Pre-defined ROI' and 'Sent ROI'
Table A.4.2e.8Example SDP answer with FECC, 'Pre-defined ROI' and 'Sent ROI'
Table A.4.10aExample SDP offer for H.264/AVC with image size negotiation
Table A.4.10bExample SDP answer
Table A.4.11Example SDP answer
Table A.4.12Example Second SDP offer
Table A.4.12adExample SDP offer for H.264/AVC with image size negotiation
Table A.4.12aeExample SDP answer
Table A.4.12afExample SDP offer for H.264/AVC with image size negotiation
Table A.4.12agExample SDP answer
Table A.4.12acExample SDP offer for H.264/AVC with image size negotiation and multiple rtpmaps
Table A.4.12bExample SDP answer
Table A.4.13Example SDP offer and answer for asymmetric video with H.264/AVC
Table A.4.14Example SDP offer for H.264/AVC with image size negotiation
Table A.4.15Example SDP answer
Table A.4.16Example SDP offer for H.264 (AVC) and H.265 (HEVC)
Table A.4.17Example SDP answer when H.265 (HEVC) is used to increase the quality
Table A.4.18Example SDP answer when H.265 (HEVC) is used to reduce the bit-rate
Table A.4.19Example SDP offer for H.264 (AVC) and H.265 (HEVC) and example SDP answer for H.265 (HEVC)
Table A.4.20Example SDP offer for H.264 (AVC) and H.265 (HEVC) and example SDP answer for H.265 (HEVC)
Table A.4.21Example SDP offer for H.264 (AVC) and H.265 (HEVC) and example SDP answer for H.265 (HEVC)
Table A.4.22Example SDP offer and answer for asymmetric video with H.264 (AVC) and H.265 (HEVC)
Table A.5.1Example SDP offer for T.140 real-time text
Table A.5.2Example SDP answer for T.140 real-time text with multiparty capability
Table A.5.3Example SDP answer for T.140 real-time text without multiparty capability
Table A.6.1SDP example with bandwidth information
Table A.6.2SDP example for speech with AMR and AMR-WB with additional bandwidth information signalled with the 'a=bw-info' attribute
Table A.6.3SDP example for video with H.264 with additional bandwidth information signalled with the 'a=bw-info' attribute
Table A.7.1SDP example with requirement on synchronization
Table A.7.2SDP example with no requirement on synchronization
Table A.8.1SDP example with QoS negotiation
Table A.9a.1SDP example for Reduced-Size RTCP
Table A.10.1Original SDP offer from an MTSI client in terminal for narrow-band speech
Table A.10.2Original SDP offer from an MTSI client in terminal for narrow-band and wide-band speech
Table A.10.3SDP offer for narrow-band speech which has been modified by the MTSI MGW before it is sent to the remote network
Table A.10.4SDP offer for wide-band and narrow-band speech which has been modified by the MTSI MGW before it is sent to the remote network
Table A.10.5New SDP offer for narrow-band speech sent by the MTSI MGW to the remote network
Table A.10.6New SDP offer for narrow-band and wide-band speech sent by the MTSI MGW to the remote network
Table A.11.1SDP offer/answer for setting up a video telephony session
Table A.11.2Second SDP offer/answer for adding one more video component
Table A.11.3Second SDP offer/answer for removing the video component
Table A.12.1.1SDP example
Table A.12.1.2SDP example
Table A.12.1.3SDP example
Table A.12.2.1Example SDP offer for H.264 video with ECN
Table A.12.2.2Example SDP offer for H.264 video with ECN
Table A.13.1SDP example for PCM
Table A.13.2SDP example for PCM
Table A.13.3SDP example for G.722
Table A.13.4SDP example for EVS, AMR-WB, G.722, AMR, PCM and DTMF
Table A.14.1SDP example
Table A.14.2SDP example
Table A.14.3SDP example
Table A.14.4aSDP example
Table A.14.4bSDP example
Table A.14.5SDP example
Table A.14.6SDP example
Table A.14.7SDP example
Table A.14.8SDP example
Table A.14.9SDP example
Table A.14.10SDP example
Table A.14.11SDP example
Table A.14.12SDP example
Table A.14.13SDP example
Table A.14.13aSDP example
Table A.14.14SDP example
Table A.14.15SDP example
Table A.14.16SDP example
Table A.15.1Example SDP offer with ANBR capability signalling for speech
Table A.15.2Example SDP answer with ANBR capability signalling for speech
Table A.15.3Example SDP offer with ANBR capability signalling for video
Table A.15.4Example SDP answer with ANBR capability signalling for video
Table A.16.1Example SDP offer with QoS hint signalling
Table A.16.2Example SDP answer with QoS hint signalling
Table A.16.3Example SDP offer with QoS hint signalling and explicit split
Table A.16.4Example SDP answer with QoS hint signalling changing QoS hint values and split
Table A.17.1Example SDP offer with data channel capability signalling
Table A.17.2Example SDP answer with data channel capability
Table A.17.3Example SDP offer with multiple data channel application sources
Table A.17.4Example UE SDP answer choosing a single data channel application source
Table A.17.5Example network SDP answer choosing a single data channel application source
Table A.17.6Example SDP offer with data channel application streams
Table A.17.7Example SDP offer with two bootstrap data channels with stream ID 100
Table A.17.8Example SDP answer with data channel application streams
Table A.17.9Example SDP offer with data channel media stream supporting SDP direction attribute "a=inactive"
Table A.17.10Example SDP offer with data channel media stream supporting SDP direction attribute "a=sendrecv"
Table A.17.11Example SDP offer with multiplexed data channel application streams
Table A.17.12Example SDP answer with multiplexed data channel application streams
Table A.18.1Example SDP offer with scene description signalling
Table A.19.1SDP example
Table A.19.2SDP example
Table C.1Distinction of different settings for frame aggregation, redundancy and codec mode settings
Table C.2Signalling state machine states
Figure C.1Signalling state machine, implemented in order to ensure safe adaptation state transitions
Table C.3Adaptation state machine states and their meaning
Table C.4State transition definitions, thresholds and temporal adaptation control parameters
Table C.4aFLR thresholds when using the frame loss rate to control the adaptation
Figure C.2State diagram for four-state adaptation state machine
Table C.5State transitions for four-state adaptation state machine
Figure C.3State diagram for simplified four-state adaptation state machine
Table C.6State transitions for simplified four-state adaptation state machine
Figure C.4State diagram for two-state adaptation state machine
Table C.7State transitions for two-state adaptation state machine
Table C.8Configuration parameters used for the ECN triggered adaptation in this example
Figure C.5Example of codec mode usage in a session
Figure C.6Example of how ECN may trigger codec adaptation
Figure C.7Example of codec mode usage in a session
Figure C.8Schematic figure of bitrate reduction in video encoder when the encoder cannot immediately switch to the requested bitrate
Table E.0Example mapping between media type and QCI.
Table E.1QoS mapping for bi-directional speech (AMR 12.2, IPv4, RTCP and MBR=GBR bearer)
Table E.3QoS mapping for bi-directional real-time text (3 kbps, IPv4, RTCP and MBR=GBR bearer) when using a conversational class bearer
Table E.4QoS mapping for bi-directional real-time text (3 kbps, IPv4, RTCP) when using an interactive bearer
Table E.5QoS mapping for bi-directional real-time text (3 kbps, IPv6, RTCP and MBR=GBR bearer) when using a conversational class bearer
Table E.6QoS mapping for bi-directional speech (AMR-WB 23.85, IPv4, RTCP and MBR=GBR bearer)
Table E.7QoS mapping for bi-directional video (H.264 AVC level 1.1, 192 kbps, IPv4, RTCP and MBR=GBR bearer)
Table E.8QoS mapping for bi-directional speech (AMR 12.2, IPv6, RTCP and MBR=GBR bearer)
Table E.9QoS mapping for bi-directional speech (AMR-WB 23.85, IPv6, RTCP and MBR=GBR bearer)
Table E.11QoS mapping for bi-directional video (H.264 AVC level 1.1, 192 kbps, IPv6, RTCP and MBR=GBR bearer)
Table E.12QoS mapping for bi-directional speech (AMR, IPv4, RTCP and MBR>GBR bearer)
Table E.13QoS mapping for bi-directional speech (AMR-WB, IPv4, RTCP and MBR>GBR bearer)
Table E.15QoS mapping for bi-directional video (H.264 AVC level 1.1, IPv4, RTCP and MBR>GBR bearer)
Table E.16QoS mapping for bi-directional speech (AMR, IPv6, RTCP and MBR>GBR bearer)
Table E.17QoS mapping for bi-directional speech (AMR-WB, IPv6, RTCP and MBR>GBR bearer)
Table E.19QoS mapping for bi-directional video (H.264 AVC level 1.1, IPv6, RTCP and MBR>GBR bearer)
Table E.20QoS mapping for bi-directional video (H.264 AVC level 1.2, 384 kbps, IPv4, RTCP and MBR=GBR bearer)
Table E.21QoS mapping for bi-directional video (H.264 AVC level 1.2, 384 kbps, IPv6, RTCP and MBR=GBR bearer)
Table E.22QoS mapping for bi-directional video (H.264 AVC level 1.2, IPv4, RTCP and MBR>GBR bearer)
Table E.23QoS mapping for bi-directional video (H.264 AVC level 1.2, IPv6, RTCP and MBR>GBR bearer)
Table E.24QoS mapping for bi-directional video (H.265 (HEVC) level 3.1, 300 kbps, IPv6, RTCP and MBR=GBR bearer)
Table E.25QoS mapping for bi-directional video (H.265 (HEVC) level 3.1, 500/40 kbps, IPv6, RTCP and MBR>GBR bearer)
Table E.26QoS mapping for bi-directional video (H.265 (HEVC) level 3.1, 600 kbps, IPv6, RTCP and MBR=GBR bearer)
Table E.27QoS mapping for bi-directional video (H.265 (HEVC) level 3.1, 600/40 kbps, IPv6, RTCP and MBR>GBR bearer)
Table E.28QoS mapping for bi-directional video (H.265 (HEVC) level 3.1, 650 kbps, IPv6, RTCP and MBR=GBR bearer)
Table E.29QoS mapping for bi-directional video (H.265 (HEVC) level 3.1, 650/40 kbps, IPv6, RTCP and MBR>GBR bearer)
Table E.30QoS mapping for bi-directional video (H.265 (HEVC) level 3.1, 750 kbps, IPv6, RTCP and MBR=GBR bearer)
Table E.31QoS mapping for bi-directional video (H.265 (HEVC) level 3.1, 750/40 kbps, IPv6, RTCP and MBR>GBR bearer)
Table E.32QoS mapping for bi-directional speech (EVS 13.2, IPv4, RTCP and MBR=GBR bearer)
Table E.33QoS mapping for bi-directional speech (EVS 24.4, IPv4, RTCP and MBR=GBR bearer)
Table E.34QoS mapping for bi-directional speech (EVS 13.2, IPv6, RTCP and MBR=GBR bearer)
Table E.35QoS mapping for bi-directional speech (EVS 24.4, IPv6, RTCP and MBR=GBR bearer)
Table G.3.1SDP example for narrowband speech and DTMF
Table G.3.2SDP example for narrowband,wideband and super-wideband for both speech and DTMF
Table K.1Computation of b=AS for AMR (IPv4, ptime=20, bandwidth-efficient mode)
Table K.2Computation of b=AS for AMR (IPv6, ptime=20, bandwidth-efficient mode)
Table K.3Computation of b=AS for AMR (IPv4, ptime=20, octet-aligned mode)
Table K.4Computation of b=AS for AMR (IPv6, ptime=20, octet-aligned mode)
Table K.5Computation of b=AS for AMR-WB (IPv4, ptime=20, bandwidth-efficient mode)
Table K.6Computation of b=AS for AMR-WB (IPv6, ptime=20, bandwidth-efficient mode)
Table K.7Computation of b=AS for AMR-WB (IPv4, ptime=20, octet-aligned mode)
Table K.8Computation of b=AS for AMR-WB (IPv6, ptime=20, octet-aligned mode)
Table K.9Computation of b=AS for AMR (IPv4, ptime=40, bandwidth-efficient mode)
Table K.10Computation of b=AS for AMR (IPv6, ptime=40, bandwidth-efficient mode)
Table K.11Computation of b=AS for AMR (IPv4, ptime=40, octet-aligned mode)
Table K.12Computation of b=AS for AMR (IPv6, ptime=40, octet-aligned mode)
Table K.13Computation of b=AS for AMR-WB (IPv4, ptime=40, bandwidth-efficient mode)
Table K.14Computation of b=AS for AMR-WB (IPv6, ptime=40, bandwidth-efficient mode)
Table K.15Computation of b=AS for AMR-WB (IPv4, ptime=40, octet-aligned mode)
Table K.16Computation of b=AS for AMR-WB (IPv6, ptime=40, octet-aligned mode)
Table L.1Recommended configuration for T.38 UDPTL-based FoIP
Table L.2Example SDP offer for facsimile-only session
Table N.1Example of b=AS values for H.264/AVC
Figure P.1Video error recovery using NACK feedback message.
Figure P.2Video error recovery using PLI feedback message.
Figure P.3Example case where sender does not have to respond to incoming NACK/PLI messages.
Figure P.4Video error recovery using NACK feedback message and retransmission.
Table Q.1Computation of b=AS for EVS Primary mode (IPv4, ptime=20)
Table Q.2Computation of b=AS for EVS Primary mode (IPv6, ptime=20)
Table Q.3Computation of b=AS for EVS Primary mode (IPv4, ptime=40)
Table Q.4Computation of b=AS for EVS Primary mode (IPv6, ptime=40)
Table Q.5Computation of b=AS for EVS Primary mode (IPv4, ptime=20, dual-mono)
Table Q.6Computation of b=AS for EVS Primary mode (IPv6, ptime=20, dual-mono)
Table T.0Example QoS bandwidth reservations for example SDP answers
Table T.1Example SDP offer from MSMTSI towards MTSI
Table T.2Example SDP answer from MTSI towards MSMTSI
Table T.3Example SDP answer from MSMTSI MRF towards MSMTSI
Table T.4Example SDP answer from MSMTSI towards another MSMTSI
Table T.4aExample SDP simulcast offer from MSMTSI using a single payload type
Table T.4bExample SDP simulcast offer from MSMTSI using two codecs
Table T.5Example SDP offer from MSMTSI multi-stream audio
Table T.6Example SDP answer from MSMTSI MRF accepting multi-stream audio
Table T.7Example concurrent codec capability configurations in MSMTSI terminals
Table T.8Example SDP offer for CCCEx example configuration from MSMTSI terminal A
Table T.9Example SDP answer from MSMTSI MRF accepting multi-stream audio and enabling a conference with 6 participants (for SDP offer in Table T.8)
Table T.10Example SDP answer from MSMTSI MRF accepting multi-stream audio and enabling a conference with 4 participants (for SDP offer in Table T.8)
Table T.3a1Example SDP offer from an MSMTSI terminal
Table T.3a2Example SDP answer from the MSMTSI MRF accepting multi-stream audio and enabling a conference with 6 participants (for SDP offer in Table T.3a1)
Table T.11Example SIP OPTIONS request from an MRF or a conference initiator
Table T.12Example SIP OPTIONS response from a conference participant to the MRF or the initiator
Figure V.2.1Signaling flow on usage of RAN delay budget reporting in MTSI without DBI signalling
Figure V.2.2Signaling flow on usage of RAN delay budget reporting with uni-directional DBI signaling in MTSI
Figure V.2.3Another signaling flow on usage of RAN delay budget reporting with uni-directional DBI signalling in MTSI.
Figure V.2.4Signaling flow on usage of RAN delay budget reporting in MTSI with bi-directional DBI signalling
Figure V.2.5Signaling flow on usage of RAN delay budget reporting in MTSI with bi-directional DBI signalling and jitter buffer adjustment
Table V.3.1Example SDP offer with DBI
Table V.3.2Example SDP answer with DBI
Table W.3.1Code points for AMR
Table W.3.2Code points for AMR-WB
Table W.3.3Code points for EVS
Table W.4.2-1SDP offer attributes and parameters
Table W.4.3-1Usage of the SDP answer attributes and parameters
Table X.1Example Maximum End-to-end Packet Loss Rate (PLR) per link for AMR-WB and EVS
Table X.2Example Max. End-to-end Packet Loss Rate (PLR) with application layer redundancy for EVS codec
Table X.2.2-1SDP offer supporting adaptation to packet loss without using application layer redundancy
Table X.2.2-2SDP answer supporting adaptation to packet loss without using application layer redundancy
Table X.2.2-3SDP answer not supporting adaptation to packet loss
Table X.2.3-1SDP offer supporting adaptation to packet loss using application layer redundancy and the in-band RTP CMR code points specified in clause W.3
Table X.2.3-2SDP answer supporting adaptation to packet loss using application layer redundancy and the in-band RTP CMR code points specified in clause W.3
Table X.2.3-3SDP answer supporting adaptation to packet loss without use of application layer redundancy
Table X.2.4-1SDP offer with maximum end-to-end PLR attribute and parameters
Table X.2.4-2SDP answer with maximum end-to-end PLR attribute and parameters agreeing to what was proposed in the SDP offer
Table X.2.4-3SDP answer with maximum end-to-end PLR attribute and parameters not agreeing to what was proposed in the SDP offer
Figure Y.1Reference sender architecture for ITT4RT client in terminal
Figure Y.2Reference receiver architecture for ITT4RT- client in terminal
Table Y.6.1Transform values
Table Y.6.2Viewport control values
Table Y.6.5.2-1Example SDP offer with 360-degree fisheye video attribute parameters
Table Y.8.1Example SDP offer with multiple 360-degree video
Table Y.8.2Example SDP offer with multiple 360-degree video containing group restrictions

Top