Tech-
invite
3GPP
space
IETF
RFCs
SIP
index
21
22
23
24
25
26
27
28
29
31
32
33
34
35
36
37
38
4‑5x
Content for
TR 25.702
Word version: 12.1.0
1…
4…
9…
4
DCH enhancements
5
MAC layer eEnhancements
6
UE power consumption efficiency
7
Voice over HSPA (VoHSPA)
8
Simulation assumptions
4
DCH enhancements
Word‑p. 10
4.1
UpLink (UL) physical layer enhancements
4.1.1
UL Frame Early Termination (FET)
4.1.1.1
Option 1: Repetition of 10ms TTI frame
4.1.1.1.1
Outer Loop Power Control (OLPC) algorithm in UL
4.1.1.1.2
UL DTCH/DCCH compression and repetition
Word‑p. 11
4.1.1.2
Option 2: New rate matching and interleaving chains
Word‑p. 12
4.1.1.2.1
Encoding procedure of UL Early Termination (ET)
Word‑p. 13
4.1.1.2.2
Transport block concatenation for single TrCH
4.1.1.2.3
CRC attachment
4.1.1.2.4
Channel coding
4.1.1.2.5
Rate matching and interleaving
Word‑p. 14
4.1.1.2.6
Physical channel mapping
4.1.1.2.7
Stop data transmission based on early termination indicator
4.1.1.2.8
Power adjustment
Word‑p. 15
4.1.1.2.9
Early Termination (ET) of both DL and UL data transmission
4.1.1.2.10
TFCI based transmission
4.1.2
UL DPCCH slot format optimization
Word‑p. 16
4.1.2.1
Option 1: Removing TFCI fields
4.1.2.2
Option 2: Reusing legacy UL DPCCH slot format
Word‑p. 17
4.1.2.3
Option 3: Relocation of TFCI fields
4.1.3
UL ACK indication for DL frame Early Termination (ET)
Word‑p. 18
4.1.3.1
Option 1: New FET control channel
4.1.3.2
Option 2: TDM of FET ACK and TFCI in DPCCH
4.1.3.3
Option 3: FET ACK using spared TPC symbols
Word‑p. 21
4.2
Downlink physical layer enhancements
Word‑p. 22
4.2.1
Downlink Frame Early Termination (FET)
4.2.1.1
Option 1: Shortened TTI
4.2.1.1.1
DCCH indicator bit, choice of CRC length and transport channels
4.2.1.2
Option 2: New rate matching and interleaving
Word‑p. 23
4.2.1.2.1
Encoding procedure of DL Early Termination (ET)
4.2.1.2.2
Transport block concatenation for single TrCH
Word‑p. 24
4.2.1.2.3
CRC attachment
4.2.1.2.4
Channel coding
4.2.1.2.5
Rate matching and interleaving
4.2.1.2.6
Physical channel mapping
Word‑p. 25
4.2.1.2.7
Stop data transmission based on early termination indicator
4.2.1.2.8
Power adjustment
4.2.1.2.9
Early termination of both DL and UL data transmission
Word‑p. 26
4.2.1.2.10
TFCI based or BTFD based transmission
4.2.1.3
Option 3: Reusing legacy TTI
4.2.1.3.1
Joint encoding and FET
4.2.1.3.2
Pseudo-flexible RM: Sharing DCCH bits with DTCH
4.2.2
DL DPCCH slot format optimization
Word‑p. 28
4.2.2.1
Option 1: Removal of dedicated pilots
4.2.2.2
Option 2: Removal of dedicated pilots and optimizing TPC field
4.2.3
DL ACK indication for UL Frame Early Termination (FET)
Word‑p. 31
4.2.3.1
Option 1: ACK as part of DL DPCCH
4.2.3.2
Option 2: ACK on a new code channel
4.2.3.3
Option 3: ACK using spared TPC symbols
4.2.4
DPCH Time Domain Multiplexing (TDM)
Word‑p. 33
4.2.4.1
Option 1: TDM at TTI Level
4.2.4.2
Option 2: TDM at slot level
Word‑p. 36
4.2.5
Considerations of frame timing for DPCH Time Domain Multiplexing solutions
Word‑p. 37
4.2.5.1
Background
4.2.5.2
Pairing of users
4.2.5.2.1
Pairing of long-lived users
Word‑p. 38
4.2.5.2.2
Pairing of short-lived users
Word‑p. 39
4.2.5.3
Pairing of traversing users
Word‑p. 41
4.2.5.4
Pairing with extended soft combining window
Word‑p. 42
4.2.5.4.1
Effect of extended soft combining window on UE battery saving
4.2.5.4.2
Effect of extended soft combining window on delay budget
4.2.5.4.3
Effect on UL timing
Word‑p. 43
4.2.5.5
Conclusion on user paring
4.2.6
Code-space and UE power efficient Signalling Radio Bearer (SRB) design
Word‑p. 44
4.2.6.1
Shared DCH for SRB
4.2.6.1.1
SRB on DCH design as used since R99
4.2.6.1.2
Shared DCH design
Word‑p. 45
4.2.6.1.3
Shared DCH for HSPA
Word‑p. 48
4.2.6.1.4
Shared DCH for HSPA with CPC
4.2.6.1.5
Shared DCH for enhanced R99
Word‑p. 49
5
MAC layer eEnhancements
Word‑p. 51
6
UE power consumption efficiency
7
Voice over HSPA (VoHSPA)
Word‑p. 52
7.1
General overview of CS VoHSPA
7.2
VoHSPA details
7.2.1
Serving Cell Change (SCC), enhanced SCC, and Node-B-terminated bicasting
7.2.2
Mobility
Word‑p. 53
7.2.3
Capacity
8
Simulation assumptions
Word‑p. 54
8.1
Simulation assumptions for Voice over HSPA (VoHSPA)
8.1.1
Link simulation assumptions for VoHSPA
8.1.1.1
Link simulation assumptions for downlink VoHSPA
8.1.1.2
Link simulation assumptions for uplink VoHSPA
Word‑p. 57
8.1.2
Link performance metrics for VoHSPA
Word‑p. 58
8.1.2.1
Link performance metrics for downlink VoHSPA
8.1.2.2
Link Performance metrics for uplink VoHSPA
8.1.3
System simulation assumptions for VoHSPA
Word‑p. 59
8.1.3.1
System simulation assumptions for downlink VoHSPA
8.1.3.2
System simulation assumptions for uplink VoHSPA
Word‑p. 61
8.1.4
System performance metrics for VoHSPA
Word‑p. 63
8.1.4.1
System performance metrics for downlink VoHSPA
8.1.4.2
System performance metrics for uplink VoHSPA
8.2
Simulation assumptions for voice over R99 and DCH enhancements
Word‑p. 64
8.2.1
Link simulation assumptions for voice over R99 DCH
8.2.1.1
Link simulation assumptions for Downlink voice over R99 DCH
8.2.1.2
Link simulation assumptions for Uplink voice over R99 DCH
Word‑p. 68
8.2.2
Link Performance Evaluation Metrics
Word‑p. 69
8.2.2.1
Link Performance metrics for downlink voice over R99 DCH
8.2.2.2
Link Performance metrics for uplink voice over R99 DCH
8.2.3
System simulation assumptions
Word‑p. 70
8.2.3.1
System simulation assumptions for Downlink
8.2.3.1.1
Simulation assumptions for Downlink voice over R99 DCH
8.2.3.1.2
General system assumptions for Downlink
Word‑p. 71
8.2.3.1.3
Simplified simulation methodology for HSDPA throughput from voice-only simulation
Word‑p. 72
8.2.3.1.4
Link-to-system mapping for DCH
Word‑p. 76
8.2.3.2
System simulation assumptions for Uplink
Word‑p. 78
8.2.3.2.1
Simulation assumptions for Uplink voice over R99 DCH
8.2.3.2.2
General system assumptions for Uplink
Word‑p. 79
8.2.4
System performance evaluation metrics
Word‑p. 82
8.2.4.1
System performance metrics for downlink voice over R99 and enhanced DCH
8.2.4.2
System performance metrics for uplink voice over R99 and enhanced DCH
8.2.5
Link simulation assumptions for voice over enhanced DCH (Solution 1 and 3)
Word‑p. 83
8.2.5.1
Link simulation assumptions for Downlink voice over enhanced DCH
8.2.5.1.1
Pilot-free DPCCH slot formats
8.2.5.1.2
DPDCH Frame Early Termination (FET)
Word‑p. 84
8.2.5.2
Link simulation assumptions for Uplink voice over enhanced DCH
Word‑p. 86
8.2.5.2.1
DPDCH Frame Early Termination (FET)
8.2.5.2.2
Uplink DTCH / DCCH compression and repetition
Word‑p. 89
8.2.5.2.3
FET-DPCCH
Word‑p. 90
8.2.6
Link simulation assumptions for voice over enhanced DCH (Solution 2 and 4)
Word‑p. 92
8.2.6.1
Link simulation assumptions for Downlink voice over enhanced DCH
8.2.6.1.1
New proposed slot formats
8.2.6.1.2
Early Termination
Word‑p. 94
8.2.6.1.3
Others
Word‑p. 95
8.2.6.2
Link simulation assumptions for Uplink voice over enhanced DCH
Word‑p. 96
8.2.6.2.1
TFCI based transmission
8.2.6.2.2
Early Termination (ET)
8.2.7
Link Performance Evaluation Metrics for voice over enhanced DCH
Word‑p. 98
8.2.8
System simulation assumptions for voice over enhanced DCH (Solution 1 and 3)
Word‑p. 99
8.2.9
System simulation assumptions for voice over enhanced DCH (Solution 2 and 4)