Tech-invite3GPP-SpecsFeaturesEntitiesInterfacesSBIsIdentifiersTi+Search in Tech-invite

21222324252627282931323334353637384‑5x
Top   in Index   Prev   Next

TS 45.010RAN6
GSM/EDGE Radio Subsystem Synchronization

use "3GPP‑Page" to get the Word version
use "ETSI‑search" to get the PDF version
for a better overview, the Table of Contents (ToC) is reproduced
V15.1.0 (PDF)  2019/03  39 p.
V14.4.0  2019/03  39 p.
V13.5.0  2019/03  36 p.
V12.0.0  2014/09  34 p.
V11.1.0  2012/12  34 p.
V10.1.0  2011/04  34 p.
V9.0.0  2009/12  33 p.
V8.5.0  2009/12  33 p.
V7.7.0  2009/12  32 p.
V6.7.0  2008/06  27 p.
V5.3.0  2003/09  26 p.
V4.5.0  2003/09  26 p.
GSM Rel-99 v8.12.0  2003/09  27 p.
GSM Rel-98 v7.4.0  2000/11  24 p.
GSM Rel-97 v6.7.0  2000/11  19 p.
GSM Rel-96 v5.4.1  2000/11  15 p.
GSM Phase-2 v4.9.0  1996/04  15 p.
GSM Phase-1 v3.5.1  1992/10  8 p.

Rapporteur:  Mr. Liberg, Olof

This TS defines the requirements for synchronization on the radio sub-system of the digital cellular telecommunications systems GSM. However, it does not define the synchronization algorithms to be used in the Base Transceiver Station (BTS), CTS Fixed Part (CTS-FP) and Mobile Station (MS). These are up to the manufacturer to specify.
The BTS sends signals on the BCCH carrier or, for COMPACT on the CPBCCH carrier, to enable the MS to synchronize itself to the BTS and if necessary correct its frequency standard to be in line with that of the BTS. The signals sent by the BTS for these purposes are:
  1. Frequency correction bursts;
  2. Synchronization bursts.
The timings of timeslots, TDMA frames, TCH frames, control channel frames, and (for COMPACT) the rotation of time groups are all related to a common set of counters which run continuously whether the MS and BTS are transmitting or not. Thus, once the MS has determined the correct setting of these counters, all its processes are synchronized to the current serving BTS.
The MS times its transmissions to the BTS in line with those received from the BTS. The BTS sends to each MS a "timing advance" parameter (TA) according to the perceived round trip propagation delay BTS-MS-BTS. The MS advances its timing by this amount, with the result that signals from different MS's arriving at the BTS and compensated for propagation delay. This process is called "adaptive frame alignment".
Additionally, synchronization functions may be implemented in both the MS and the BTS to support the so-called pseudo synchronization scheme for circuit-switched handovers. The support of this scheme is optional except that MS shall measure and report the Observed Timing Difference (OTD), which is a mandatory requirement. The detailed specifications of the pseudo-synchronization scheme for circuit-switched handovers are included in Annex A.
While in dual transfer mode an MS performs all the tasks of dedicated mode. In addition, upper layers can require the release of all the packet resources, which triggers the transition to dedicated mode, or the release of the RR resources, which triggers the transition either to idle mode and packet idle mode or, depending upon network and MS capabilities, to packet transfer mode. When handed over to a new cell, the MS leaves the dual transfer mode, enters the dedicated mode where it switches to the new cell, may read the system information messages sent on the SACCH and may then enter dual transfer mode in the new cell (see TS 44.060).
In CTS, the CTS-FP sends signals on the CTSBCH to enable the MS to synchronize itself to the CTS-FP and if necessary correct its frequency standard to be in line with that of the CTS-FP.
The signals sent by the CTS-FP for these purposes are:
  1. Frequency correction bursts;
  2. Synchronization bursts.
The timings of timeslots, TDMA frames, CTSBCH, CTSARCH, CTSAGCH and CTSPCH frames are all related to a first common set of counters which run continuously whether the CTS-MS and CTS-FP are transmitting or not. Thus, once the CTS-MS has determined the correct setting of these first counters, the CTS-MS is able to attach to the current serving CTS-FP. In addition, during CTS-MS attachment, the CTS-FP sends to the CTS-MS the remaining counters for SACCH and TCH frames. Then, all processes of the CTS-MS are synchronized to the current serving CTS-FP.
The CTS-MS times its transmissions to the CTS-FP in line with those received from the CTS-FP. The timing advance parameter is set to zero for CTS.
Additionally, the CTS-FP may be assisted by a CTS-MS to adjust its frequency source. When required by the CTS-FP, the CTS-MS estimates if possible and reports the Observed Frequency Offset of the CTS-FP with a specified BTS. The CTS-FP may then adjust its frequency source according to this value.

full Table of Contents for  TS 45.010  Word version:   15.1.0

 

Here   Top

 

 

1  ScopeWord-p. 6
2  General description of synchronization systemWord-p. 8
3  Timebase countersWord-p. 9
4  Timing of transmitted signals
5  BTS Requirements for SynchronizationWord-p. 11
6  MS Requirements for Synchronization
7  CTS-FP Requirements for SynchronizationWord-p. 27
A (Normative)  Additional requirements for pseudo synchronization, synchronized handovers and pseudo synchronized handoversWord-p. 28
B  CTSBCH timeslot shifting properties for CTS-MS synchronizationWord-p. 31
C  BTS frequency source stability and E-OTD LMU reporting periods for LCSWord-p. 32
D  Change historyWord-p. 34

Up   Top