Tech-invite3GPPspaceIETF RFCsSIP
9190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 4035

Protocol Modifications for the DNS Security Extensions

Pages: 53
Proposed Standard
Errata
Obsoletes:  253530083090344536553658375537573845
Updates:  10341035213621812308322535973226
Updated by:  44706014684081989077
Part 1 of 3 – Pages 1 to 19
None   None   Next

Top   ToC   RFC4035 - Page 1
Network Working Group                                          R. Arends
Request for Comments: 4035                          Telematica Instituut
Obsoletes: 2535, 3008, 3090, 3445, 3655, 3658,                R. Austein
           3755, 3757, 3845                                          ISC
Updates: 1034, 1035, 2136, 2181, 2308, 3225,                   M. Larson
         3007, 3597, 3226                                       VeriSign
Category: Standards Track                                      D. Massey
                                               Colorado State University
                                                                 S. Rose
                                                                    NIST
                                                              March 2005


         Protocol Modifications for the DNS Security Extensions

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2005).

Abstract

This document is part of a family of documents that describe the DNS Security Extensions (DNSSEC). The DNS Security Extensions are a collection of new resource records and protocol modifications that add data origin authentication and data integrity to the DNS. This document describes the DNSSEC protocol modifications. This document defines the concept of a signed zone, along with the requirements for serving and resolving by using DNSSEC. These techniques allow a security-aware resolver to authenticate both DNS resource records and authoritative DNS error indications. This document obsoletes RFC 2535 and incorporates changes from all updates to RFC 2535.
Top   ToC   RFC4035 - Page 2

Table of Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. Background and Related Documents . . . . . . . . . . . . 4 1.2. Reserved Words . . . . . . . . . . . . . . . . . . . . . 4 2. Zone Signing . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1. Including DNSKEY RRs in a Zone . . . . . . . . . . . . . 5 2.2. Including RRSIG RRs in a Zone . . . . . . . . . . . . . 5 2.3. Including NSEC RRs in a Zone . . . . . . . . . . . . . . 6 2.4. Including DS RRs in a Zone . . . . . . . . . . . . . . . 7 2.5. Changes to the CNAME Resource Record. . . . . . . . . . 7 2.6. DNSSEC RR Types Appearing at Zone Cuts. . . . . . . . . 8 2.7. Example of a Secure Zone . . . . . . . . . . . . . . . . 8 3. Serving . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1. Authoritative Name Servers . . . . . . . . . . . . . . . 9 3.1.1. Including RRSIG RRs in a Response . . . . . . . 10 3.1.2. Including DNSKEY RRs in a Response . . . . . . . 11 3.1.3. Including NSEC RRs in a Response . . . . . . . . 11 3.1.4. Including DS RRs in a Response . . . . . . . . . 14 3.1.5. Responding to Queries for Type AXFR or IXFR . . 15 3.1.6. The AD and CD Bits in an Authoritative Response. 16 3.2. Recursive Name Servers . . . . . . . . . . . . . . . . . 17 3.2.1. The DO Bit . . . . . . . . . . . . . . . . . . . 17 3.2.2. The CD Bit . . . . . . . . . . . . . . . . . . . 17 3.2.3. The AD Bit . . . . . . . . . . . . . . . . . . . 18 3.3. Example DNSSEC Responses . . . . . . . . . . . . . . . . 19 4. Resolving . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1. EDNS Support . . . . . . . . . . . . . . . . . . . . . . 19 4.2. Signature Verification Support . . . . . . . . . . . . . 19 4.3. Determining Security Status of Data . . . . . . . . . . 20 4.4. Configured Trust Anchors . . . . . . . . . . . . . . . . 21 4.5. Response Caching . . . . . . . . . . . . . . . . . . . . 21 4.6. Handling of the CD and AD Bits . . . . . . . . . . . . . 22 4.7. Caching BAD Data . . . . . . . . . . . . . . . . . . . . 22 4.8. Synthesized CNAMEs . . . . . . . . . . . . . . . . . . . 23 4.9. Stub Resolvers . . . . . . . . . . . . . . . . . . . . . 23 4.9.1. Handling of the DO Bit . . . . . . . . . . . . . 24 4.9.2. Handling of the CD Bit . . . . . . . . . . . . . 24 4.9.3. Handling of the AD Bit . . . . . . . . . . . . . 24 5. Authenticating DNS Responses . . . . . . . . . . . . . . . . . 25 5.1. Special Considerations for Islands of Security . . . . . 26 5.2. Authenticating Referrals . . . . . . . . . . . . . . . . 26 5.3. Authenticating an RRset with an RRSIG RR . . . . . . . . 28 5.3.1. Checking the RRSIG RR Validity . . . . . . . . . 28 5.3.2. Reconstructing the Signed Data . . . . . . . . . 29 5.3.3. Checking the Signature . . . . . . . . . . . . . 31 5.3.4. Authenticating a Wildcard Expanded RRset Positive Response. . . . . . . . . . . . . . . . 32
Top   ToC   RFC4035 - Page 3
       5.4.  Authenticated Denial of Existence  . . . . . . . . . . . 32
       5.5.  Resolver Behavior When Signatures Do Not Validate  . . . 33
       5.6.  Authentication Example . . . . . . . . . . . . . . . . . 33
   6.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 33
   7.  Security Considerations  . . . . . . . . . . . . . . . . . . . 33
   8.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 34
   9.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 34
       9.1.  Normative References . . . . . . . . . . . . . . . . . . 34
       9.2.  Informative References . . . . . . . . . . . . . . . . . 35
   A.  Signed Zone Example  . . . . . . . . . . . . . . . . . . . . . 36
   B.  Example Responses  . . . . . . . . . . . . . . . . . . . . . . 41
       B.1.  Answer . . . . . . . . . . . . . . . . . . . . . . . . . 41
       B.2.  Name Error . . . . . . . . . . . . . . . . . . . . . . . 43
       B.3.  No Data Error  . . . . . . . . . . . . . . . . . . . . . 44
       B.4.  Referral to Signed Zone  . . . . . . . . . . . . . . . . 44
       B.5.  Referral to Unsigned Zone  . . . . . . . . . . . . . . . 45
       B.6.  Wildcard Expansion . . . . . . . . . . . . . . . . . . . 46
       B.7.  Wildcard No Data Error . . . . . . . . . . . . . . . . . 47
       B.8.  DS Child Zone No Data Error  . . . . . . . . . . . . . . 48
   C.  Authentication Examples  . . . . . . . . . . . . . . . . . . . 49
       C.1.  Authenticating an Answer . . . . . . . . . . . . . . . . 49
             C.1.1.  Authenticating the Example DNSKEY RR . . . . . . 49
       C.2.  Name Error . . . . . . . . . . . . . . . . . . . . . . . 50
       C.3.  No Data Error  . . . . . . . . . . . . . . . . . . . . . 50
       C.4.  Referral to Signed Zone  . . . . . . . . . . . . . . . . 50
       C.5.  Referral to Unsigned Zone  . . . . . . . . . . . . . . . 51
       C.6.  Wildcard Expansion . . . . . . . . . . . . . . . . . . . 51
       C.7.  Wildcard No Data Error . . . . . . . . . . . . . . . . . 51
       C.8.  DS Child Zone No Data Error  . . . . . . . . . . . . . . 51
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 52
   Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . 53

1. Introduction

The DNS Security Extensions (DNSSEC) are a collection of new resource records and protocol modifications that add data origin authentication and data integrity to the DNS. This document defines the DNSSEC protocol modifications. Section 2 of this document defines the concept of a signed zone and lists the requirements for zone signing. Section 3 describes the modifications to authoritative name server behavior necessary for handling signed zones. Section 4 describes the behavior of entities that include security-aware resolver functions. Finally, Section 5 defines how to use DNSSEC RRs to authenticate a response.
Top   ToC   RFC4035 - Page 4

1.1. Background and Related Documents

This document is part of a family of documents defining DNSSEC that should be read together as a set. [RFC4033] contains an introduction to DNSSEC and definitions of common terms; the reader is assumed to be familiar with this document. [RFC4033] also contains a list of other documents updated by and obsoleted by this document set. [RFC4034] defines the DNSSEC resource records. The reader is also assumed to be familiar with the basic DNS concepts described in [RFC1034], [RFC1035], and the subsequent documents that update them; particularly, [RFC2181] and [RFC2308]. This document defines the DNSSEC protocol operations.

1.2. Reserved Words

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. Zone Signing

DNSSEC introduces the concept of signed zones. A signed zone includes DNS Public Key (DNSKEY), Resource Record Signature (RRSIG), Next Secure (NSEC), and (optionally) Delegation Signer (DS) records according to the rules specified in Sections 2.1, 2.2, 2.3, and 2.4, respectively. A zone that does not include these records according to the rules in this section is an unsigned zone. DNSSEC requires a change to the definition of the CNAME resource record ([RFC1035]). Section 2.5 changes the CNAME RR to allow RRSIG and NSEC RRs to appear at the same owner name as does a CNAME RR. DNSSEC specifies the placement of two new RR types, NSEC and DS, which can be placed at the parental side of a zone cut (that is, at a delegation point). This is an exception to the general prohibition against putting data in the parent zone at a zone cut. Section 2.6 describes this change.
Top   ToC   RFC4035 - Page 5

2.1. Including DNSKEY RRs in a Zone

To sign a zone, the zone's administrator generates one or more public/private key pairs and uses the private key(s) to sign authoritative RRsets in the zone. For each private key used to create RRSIG RRs in a zone, the zone SHOULD include a zone DNSKEY RR containing the corresponding public key. A zone key DNSKEY RR MUST have the Zone Key bit of the flags RDATA field set (see Section 2.1.1 of [RFC4034]). Public keys associated with other DNS operations MAY be stored in DNSKEY RRs that are not marked as zone keys but MUST NOT be used to verify RRSIGs. If the zone administrator intends a signed zone to be usable other than as an island of security, the zone apex MUST contain at least one DNSKEY RR to act as a secure entry point into the zone. This secure entry point could then be used as the target of a secure delegation via a corresponding DS RR in the parent zone (see [RFC4034]).

2.2. Including RRSIG RRs in a Zone

For each authoritative RRset in a signed zone, there MUST be at least one RRSIG record that meets the following requirements: o The RRSIG owner name is equal to the RRset owner name. o The RRSIG class is equal to the RRset class. o The RRSIG Type Covered field is equal to the RRset type. o The RRSIG Original TTL field is equal to the TTL of the RRset. o The RRSIG RR's TTL is equal to the TTL of the RRset. o The RRSIG Labels field is equal to the number of labels in the RRset owner name, not counting the null root label and not counting the leftmost label if it is a wildcard. o The RRSIG Signer's Name field is equal to the name of the zone containing the RRset. o The RRSIG Algorithm, Signer's Name, and Key Tag fields identify a zone key DNSKEY record at the zone apex. The process for constructing the RRSIG RR for a given RRset is described in [RFC4034]. An RRset MAY have multiple RRSIG RRs associated with it. Note that as RRSIG RRs are closely tied to the RRsets whose signatures they contain, RRSIG RRs, unlike all other DNS
Top   ToC   RFC4035 - Page 6
   RR types, do not form RRsets.  In particular, the TTL values among
   RRSIG RRs with a common owner name do not follow the RRset rules
   described in [RFC2181].

   An RRSIG RR itself MUST NOT be signed, as signing an RRSIG RR would
   add no value and would create an infinite loop in the signing
   process.

   The NS RRset that appears at the zone apex name MUST be signed, but
   the NS RRsets that appear at delegation points (that is, the NS
   RRsets in the parent zone that delegate the name to the child zone's
   name servers) MUST NOT be signed.  Glue address RRsets associated
   with delegations MUST NOT be signed.

   There MUST be an RRSIG for each RRset using at least one DNSKEY of
   each algorithm in the zone apex DNSKEY RRset.  The apex DNSKEY RRset
   itself MUST be signed by each algorithm appearing in the DS RRset
   located at the delegating parent (if any).

2.3. Including NSEC RRs in a Zone

Each owner name in the zone that has authoritative data or a delegation point NS RRset MUST have an NSEC resource record. The format of NSEC RRs and the process for constructing the NSEC RR for a given name is described in [RFC4034]. The TTL value for any NSEC RR SHOULD be the same as the minimum TTL value field in the zone SOA RR. An NSEC record (and its associated RRSIG RRset) MUST NOT be the only RRset at any particular owner name. That is, the signing process MUST NOT create NSEC or RRSIG RRs for owner name nodes that were not the owner name of any RRset before the zone was signed. The main reasons for this are a desire for namespace consistency between signed and unsigned versions of the same zone and a desire to reduce the risk of response inconsistency in security oblivious recursive name servers. The type bitmap of every NSEC resource record in a signed zone MUST indicate the presence of both the NSEC record itself and its corresponding RRSIG record. The difference between the set of owner names that require RRSIG records and the set of owner names that require NSEC records is subtle and worth highlighting. RRSIG records are present at the owner names of all authoritative RRsets. NSEC records are present at the owner names of all names for which the signed zone is authoritative and also at the owner names of delegations from the
Top   ToC   RFC4035 - Page 7
   signed zone to its children.  Neither NSEC nor RRSIG records are
   present (in the parent zone) at the owner names of glue address
   RRsets.  Note, however, that this distinction is for the most part
   visible only during the zone signing process, as NSEC RRsets are
   authoritative data and are therefore signed.  Thus, any owner name
   that has an NSEC RRset will have RRSIG RRs as well in the signed
   zone.

   The bitmap for the NSEC RR at a delegation point requires special
   attention.  Bits corresponding to the delegation NS RRset and any
   RRsets for which the parent zone has authoritative data MUST be set;
   bits corresponding to any non-NS RRset for which the parent is not
   authoritative MUST be clear.

2.4. Including DS RRs in a Zone

The DS resource record establishes authentication chains between DNS zones. A DS RRset SHOULD be present at a delegation point when the child zone is signed. The DS RRset MAY contain multiple records, each referencing a public key in the child zone used to verify the RRSIGs in that zone. All DS RRsets in a zone MUST be signed, and DS RRsets MUST NOT appear at a zone's apex. A DS RR SHOULD point to a DNSKEY RR that is present in the child's apex DNSKEY RRset, and the child's apex DNSKEY RRset SHOULD be signed by the corresponding private key. DS RRs that fail to meet these conditions are not useful for validation, but because the DS RR and its corresponding DNSKEY RR are in different zones, and because the DNS is only loosely consistent, temporary mismatches can occur. The TTL of a DS RRset SHOULD match the TTL of the delegating NS RRset (that is, the NS RRset from the same zone containing the DS RRset). Construction of a DS RR requires knowledge of the corresponding DNSKEY RR in the child zone, which implies communication between the child and parent zones. This communication is an operational matter not covered by this document.

2.5. Changes to the CNAME Resource Record

If a CNAME RRset is present at a name in a signed zone, appropriate RRSIG and NSEC RRsets are REQUIRED at that name. A KEY RRset at that name for secure dynamic update purposes is also allowed ([RFC3007]). Other types MUST NOT be present at that name. This is a modification to the original CNAME definition given in [RFC1034]. The original definition of the CNAME RR did not allow any other types to coexist with a CNAME record, but a signed zone
Top   ToC   RFC4035 - Page 8
   requires NSEC and RRSIG RRs for every authoritative name.  To resolve
   this conflict, this specification modifies the definition of the
   CNAME resource record to allow it to coexist with NSEC and RRSIG RRs.

2.6. DNSSEC RR Types Appearing at Zone Cuts

DNSSEC introduced two new RR types that are unusual in that they can appear at the parental side of a zone cut. At the parental side of a zone cut (that is, at a delegation point), NSEC RRs are REQUIRED at the owner name. A DS RR could also be present if the zone being delegated is signed and seeks to have a chain of authentication to the parent zone. This is an exception to the original DNS specification ([RFC1034]), which states that only NS RRsets could appear at the parental side of a zone cut. This specification updates the original DNS specification to allow NSEC and DS RR types at the parent side of a zone cut. These RRsets are authoritative for the parent when they appear at the parent side of a zone cut.

2.7. Example of a Secure Zone

Appendix A shows a complete example of a small signed zone.

3. Serving

This section describes the behavior of entities that include security-aware name server functions. In many cases such functions will be part of a security-aware recursive name server, but a security-aware authoritative name server has some of the same requirements. Functions specific to security-aware recursive name servers are described in Section 3.2; functions specific to authoritative servers are described in Section 3.1. In the following discussion, the terms "SNAME", "SCLASS", and "STYPE" are as used in [RFC1034]. A security-aware name server MUST support the EDNS0 ([RFC2671]) message size extension, MUST support a message size of at least 1220 octets, and SHOULD support a message size of 4000 octets. As IPv6 packets can only be fragmented by the source host, a security aware name server SHOULD take steps to ensure that UDP datagrams it transmits over IPv6 are fragmented, if necessary, at the minimum IPv6 MTU, unless the path MTU is known. Please see [RFC1122], [RFC2460], and [RFC3226] for further discussion of packet size and fragmentation issues.
Top   ToC   RFC4035 - Page 9
   A security-aware name server that receives a DNS query that does not
   include the EDNS OPT pseudo-RR or that has the DO bit clear MUST
   treat the RRSIG, DNSKEY, and NSEC RRs as it would any other RRset and
   MUST NOT perform any of the additional processing described below.
   Because the DS RR type has the peculiar property of only existing in
   the parent zone at delegation points, DS RRs always require some
   special processing, as described in Section 3.1.4.1.

   Security aware name servers that receive explicit queries for
   security RR types that match the content of more than one zone that
   it serves (for example, NSEC and RRSIG RRs above and below a
   delegation point where the server is authoritative for both zones)
   should behave self-consistently.  As long as the response is always
   consistent for each query to the name server, the name server MAY
   return one of the following:

   o  The above-delegation RRsets.
   o  The below-delegation RRsets.
   o  Both above and below-delegation RRsets.
   o  Empty answer section (no records).
   o  Some other response.
   o  An error.

   DNSSEC allocates two new bits in the DNS message header: the CD
   (Checking Disabled) bit and the AD (Authentic Data) bit.  The CD bit
   is controlled by resolvers; a security-aware name server MUST copy
   the CD bit from a query into the corresponding response.  The AD bit
   is controlled by name servers; a security-aware name server MUST
   ignore the setting of the AD bit in queries.  See Sections 3.1.6,
   3.2.2, 3.2.3, 4, and 4.9 for details on the behavior of these bits.

   A security aware name server that synthesizes CNAME RRs from DNAME
   RRs as described in [RFC2672] SHOULD NOT generate signatures for the
   synthesized CNAME RRs.

3.1. Authoritative Name Servers

Upon receiving a relevant query that has the EDNS ([RFC2671]) OPT pseudo-RR DO bit ([RFC3225]) set, a security-aware authoritative name server for a signed zone MUST include additional RRSIG, NSEC, and DS RRs, according to the following rules: o RRSIG RRs that can be used to authenticate a response MUST be included in the response according to the rules in Section 3.1.1.
Top   ToC   RFC4035 - Page 10
   o  NSEC RRs that can be used to provide authenticated denial of
      existence MUST be included in the response automatically according
      to the rules in Section 3.1.3.

   o  Either a DS RRset or an NSEC RR proving that no DS RRs exist MUST
      be included in referrals automatically according to the rules in
      Section 3.1.4.

   These rules only apply to responses where the semantics convey
   information about the presence or absence of resource records.  That
   is, these rules are not intended to rule out responses such as RCODE
   4 ("Not Implemented") or RCODE 5 ("Refused").

   DNSSEC does not change the DNS zone transfer protocol.  Section 3.1.5
   discusses zone transfer requirements.

3.1.1. Including RRSIG RRs in a Response

When responding to a query that has the DO bit set, a security-aware authoritative name server SHOULD attempt to send RRSIG RRs that a security-aware resolver can use to authenticate the RRsets in the response. A name server SHOULD make every attempt to keep the RRset and its associated RRSIG(s) together in a response. Inclusion of RRSIG RRs in a response is subject to the following rules: o When placing a signed RRset in the Answer section, the name server MUST also place its RRSIG RRs in the Answer section. The RRSIG RRs have a higher priority for inclusion than any other RRsets that may have to be included. If space does not permit inclusion of these RRSIG RRs, the name server MUST set the TC bit. o When placing a signed RRset in the Authority section, the name server MUST also place its RRSIG RRs in the Authority section. The RRSIG RRs have a higher priority for inclusion than any other RRsets that may have to be included. If space does not permit inclusion of these RRSIG RRs, the name server MUST set the TC bit. o When placing a signed RRset in the Additional section, the name server MUST also place its RRSIG RRs in the Additional section. If space does not permit inclusion of both the RRset and its associated RRSIG RRs, the name server MAY retain the RRset while dropping the RRSIG RRs. If this happens, the name server MUST NOT set the TC bit solely because these RRSIG RRs didn't fit.
Top   ToC   RFC4035 - Page 11

3.1.2. Including DNSKEY RRs in a Response

When responding to a query that has the DO bit set and that requests the SOA or NS RRs at the apex of a signed zone, a security-aware authoritative name server for that zone MAY return the zone apex DNSKEY RRset in the Additional section. In this situation, the DNSKEY RRset and associated RRSIG RRs have lower priority than does any other information that would be placed in the additional section. The name server SHOULD NOT include the DNSKEY RRset unless there is enough space in the response message for both the DNSKEY RRset and its associated RRSIG RR(s). If there is not enough space to include these DNSKEY and RRSIG RRs, the name server MUST omit them and MUST NOT set the TC bit solely because these RRs didn't fit (see Section 3.1.1).

3.1.3. Including NSEC RRs in a Response

When responding to a query that has the DO bit set, a security-aware authoritative name server for a signed zone MUST include NSEC RRs in each of the following cases: No Data: The zone contains RRsets that exactly match <SNAME, SCLASS> but does not contain any RRsets that exactly match <SNAME, SCLASS, STYPE>. Name Error: The zone does not contain any RRsets that match <SNAME, SCLASS> either exactly or via wildcard name expansion. Wildcard Answer: The zone does not contain any RRsets that exactly match <SNAME, SCLASS> but does contain an RRset that matches <SNAME, SCLASS, STYPE> via wildcard name expansion. Wildcard No Data: The zone does not contain any RRsets that exactly match <SNAME, SCLASS> and does contain one or more RRsets that match <SNAME, SCLASS> via wildcard name expansion, but does not contain any RRsets that match <SNAME, SCLASS, STYPE> via wildcard name expansion. In each of these cases, the name server includes NSEC RRs in the response to prove that an exact match for <SNAME, SCLASS, STYPE> was not present in the zone and that the response that the name server is returning is correct given the data in the zone.
Top   ToC   RFC4035 - Page 12
3.1.3.1. Including NSEC RRs: No Data Response
If the zone contains RRsets matching <SNAME, SCLASS> but contains no RRset matching <SNAME, SCLASS, STYPE>, then the name server MUST include the NSEC RR for <SNAME, SCLASS> along with its associated RRSIG RR(s) in the Authority section of the response (see Section 3.1.1). If space does not permit inclusion of the NSEC RR or its associated RRSIG RR(s), the name server MUST set the TC bit (see Section 3.1.1). Since the search name exists, wildcard name expansion does not apply to this query, and a single signed NSEC RR suffices to prove that the requested RR type does not exist.
3.1.3.2. Including NSEC RRs: Name Error Response
If the zone does not contain any RRsets matching <SNAME, SCLASS> either exactly or via wildcard name expansion, then the name server MUST include the following NSEC RRs in the Authority section, along with their associated RRSIG RRs: o An NSEC RR proving that there is no exact match for <SNAME, SCLASS>. o An NSEC RR proving that the zone contains no RRsets that would match <SNAME, SCLASS> via wildcard name expansion. In some cases, a single NSEC RR may prove both of these points. If it does, the name server SHOULD only include the NSEC RR and its RRSIG RR(s) once in the Authority section. If space does not permit inclusion of these NSEC and RRSIG RRs, the name server MUST set the TC bit (see Section 3.1.1). The owner names of these NSEC and RRSIG RRs are not subject to wildcard name expansion when these RRs are included in the Authority section of the response. Note that this form of response includes cases in which SNAME corresponds to an empty non-terminal name within the zone (a name that is not the owner name for any RRset but that is the parent name of one or more RRsets).
3.1.3.3. Including NSEC RRs: Wildcard Answer Response
If the zone does not contain any RRsets that exactly match <SNAME, SCLASS> but does contain an RRset that matches <SNAME, SCLASS, STYPE> via wildcard name expansion, the name server MUST include the
Top   ToC   RFC4035 - Page 13
   wildcard-expanded answer and the corresponding wildcard-expanded
   RRSIG RRs in the Answer section and MUST include in the Authority
   section an NSEC RR and associated RRSIG RR(s) proving that the zone
   does not contain a closer match for <SNAME, SCLASS>.  If space does
   not permit inclusion of the answer, NSEC and RRSIG RRs, the name
   server MUST set the TC bit (see Section 3.1.1).

3.1.3.4. Including NSEC RRs: Wildcard No Data Response
This case is a combination of the previous cases. The zone does not contain an exact match for <SNAME, SCLASS>, and although the zone does contain RRsets that match <SNAME, SCLASS> via wildcard expansion, none of those RRsets matches STYPE. The name server MUST include the following NSEC RRs in the Authority section, along with their associated RRSIG RRs: o An NSEC RR proving that there are no RRsets matching STYPE at the wildcard owner name that matched <SNAME, SCLASS> via wildcard expansion. o An NSEC RR proving that there are no RRsets in the zone that would have been a closer match for <SNAME, SCLASS>. In some cases, a single NSEC RR may prove both of these points. If it does, the name server SHOULD only include the NSEC RR and its RRSIG RR(s) once in the Authority section. The owner names of these NSEC and RRSIG RRs are not subject to wildcard name expansion when these RRs are included in the Authority section of the response. If space does not permit inclusion of these NSEC and RRSIG RRs, the name server MUST set the TC bit (see Section 3.1.1).
3.1.3.5. Finding the Right NSEC RRs
As explained above, there are several situations in which a security-aware authoritative name server has to locate an NSEC RR that proves that no RRsets matching a particular SNAME exist. Locating such an NSEC RR within an authoritative zone is relatively simple, at least in concept. The following discussion assumes that the name server is authoritative for the zone that would have held the non-existent RRsets matching SNAME. The algorithm below is written for clarity, not for efficiency. To find the NSEC that proves that no RRsets matching name N exist in the zone Z that would have held them, construct a sequence, S, consisting of the owner names of every RRset in Z, sorted into
Top   ToC   RFC4035 - Page 14
   canonical order ([RFC4034]), with no duplicate names.  Find the name
   M that would have immediately preceded N in S if any RRsets with
   owner name N had existed.  M is the owner name of the NSEC RR that
   proves that no RRsets exist with owner name N.

   The algorithm for finding the NSEC RR that proves that a given name
   is not covered by any applicable wildcard is similar but requires an
   extra step.  More precisely, the algorithm for finding the NSEC
   proving that no RRsets exist with the applicable wildcard name is
   precisely the same as the algorithm for finding the NSEC RR that
   proves that RRsets with any other owner name do not exist.  The part
   that's missing is a method of determining the name of the non-
   existent applicable wildcard.  In practice, this is easy, because the
   authoritative name server has already checked for the presence of
   precisely this wildcard name as part of step (1)(c) of the normal
   lookup algorithm described in Section 4.3.2 of [RFC1034].

3.1.4. Including DS RRs in a Response

When responding to a query that has the DO bit set, a security-aware authoritative name server returning a referral includes DNSSEC data along with the NS RRset. If a DS RRset is present at the delegation point, the name server MUST return both the DS RRset and its associated RRSIG RR(s) in the Authority section along with the NS RRset. If no DS RRset is present at the delegation point, the name server MUST return both the NSEC RR that proves that the DS RRset is not present and the NSEC RR's associated RRSIG RR(s) along with the NS RRset. The name server MUST place the NS RRset before the NSEC RRset and its associated RRSIG RR(s). Including these DS, NSEC, and RRSIG RRs increases the size of referral messages and may cause some or all glue RRs to be omitted. If space does not permit inclusion of the DS or NSEC RRset and associated RRSIG RRs, the name server MUST set the TC bit (see Section 3.1.1).
3.1.4.1. Responding to Queries for DS RRs
The DS resource record type is unusual in that it appears only on the parent zone's side of a zone cut. For example, the DS RRset for the delegation of "foo.example" is stored in the "example" zone rather than in the "foo.example" zone. This requires special processing rules for both name servers and resolvers, as the name server for the child zone is authoritative for the name at the zone cut by the normal DNS rules but the child zone does not contain the DS RRset.
Top   ToC   RFC4035 - Page 15
   A security-aware resolver sends queries to the parent zone when
   looking for a needed DS RR at a delegation point (see Section 4.2).
   However, special rules are necessary to avoid confusing
   security-oblivious resolvers which might become involved in
   processing such a query (for example, in a network configuration that
   forces a security-aware resolver to channel its queries through a
   security-oblivious recursive name server).  The rest of this section
   describes how a security-aware name server processes DS queries in
   order to avoid this problem.

   The need for special processing by a security-aware name server only
   arises when all the following conditions are met:

   o  The name server has received a query for the DS RRset at a zone
      cut.

   o  The name server is authoritative for the child zone.

   o  The name server is not authoritative for the parent zone.

   o  The name server does not offer recursion.

   In all other cases, the name server either has some way of obtaining
   the DS RRset or could not have been expected to have the DS RRset
   even by the pre-DNSSEC processing rules, so the name server can
   return either the DS RRset or an error response according to the
   normal processing rules.

   If all the above conditions are met, however, the name server is
   authoritative for SNAME but cannot supply the requested RRset.  In
   this case, the name server MUST return an authoritative "no data"
   response showing that the DS RRset does not exist in the child zone's
   apex.  See Appendix B.8 for an example of such a response.

3.1.5. Responding to Queries for Type AXFR or IXFR

DNSSEC does not change the DNS zone transfer process. A signed zone will contain RRSIG, DNSKEY, NSEC, and DS resource records, but these records have no special meaning with respect to a zone transfer operation. An authoritative name server is not required to verify that a zone is properly signed before sending or accepting a zone transfer. However, an authoritative name server MAY choose to reject the entire zone transfer if the zone fails to meet any of the signing requirements described in Section 2. The primary objective of a zone transfer is to ensure that all authoritative name servers have identical copies of the zone. An authoritative name server that
Top   ToC   RFC4035 - Page 16
   chooses to perform its own zone validation MUST NOT selectively
   reject some RRs and accept others.

   DS RRsets appear only on the parental side of a zone cut and are
   authoritative data in the parent zone.  As with any other
   authoritative RRset, the DS RRset MUST be included in zone transfers
   of the zone in which the RRset is authoritative data.  In the case of
   the DS RRset, this is the parent zone.

   NSEC RRs appear in both the parent and child zones at a zone cut and
   are authoritative data in both the parent and child zones.  The
   parental and child NSEC RRs at a zone cut are never identical to each
   other, as the NSEC RR in the child zone's apex will always indicate
   the presence of the child zone's SOA RR whereas the parental NSEC RR
   at the zone cut will never indicate the presence of an SOA RR.  As
   with any other authoritative RRs, NSEC RRs MUST be included in zone
   transfers of the zone in which they are authoritative data.  The
   parental NSEC RR at a zone cut MUST be included in zone transfers of
   the parent zone, and the NSEC at the zone apex of the child zone MUST
   be included in zone transfers of the child zone.

   RRSIG RRs appear in both the parent and child zones at a zone cut and
   are authoritative in whichever zone contains the authoritative RRset
   for which the RRSIG RR provides the signature.  That is, the RRSIG RR
   for a DS RRset or a parental NSEC RR at a zone cut will be
   authoritative in the parent zone, and the RRSIG for any RRset in the
   child zone's apex will be authoritative in the child zone.  Parental
   and child RRSIG RRs at a zone cut will never be identical to each
   other, as the Signer's Name field of an RRSIG RR in the child zone's
   apex will indicate a DNSKEY RR in the child zone's apex whereas the
   same field of a parental RRSIG RR at the zone cut will indicate a
   DNSKEY RR in the parent zone's apex.  As with any other authoritative
   RRs, RRSIG RRs MUST be included in zone transfers of the zone in
   which they are authoritative data.

3.1.6. The AD and CD Bits in an Authoritative Response

The CD and AD bits are designed for use in communication between security-aware resolvers and security-aware recursive name servers. These bits are for the most part not relevant to query processing by security-aware authoritative name servers. A security-aware name server does not perform signature validation for authoritative data during query processing, even when the CD bit is clear. A security-aware name server SHOULD clear the CD bit when composing an authoritative response.
Top   ToC   RFC4035 - Page 17
   A security-aware name server MUST NOT set the AD bit in a response
   unless the name server considers all RRsets in the Answer and
   Authority sections of the response to be authentic.  A security-aware
   name server's local policy MAY consider data from an authoritative
   zone to be authentic without further validation.  However, the name
   server MUST NOT do so unless the name server obtained the
   authoritative zone via secure means (such as a secure zone transfer
   mechanism) and MUST NOT do so unless this behavior has been
   configured explicitly.

   A security-aware name server that supports recursion MUST follow the
   rules for the CD and AD bits given in Section 3.2 when generating a
   response that involves data obtained via recursion.

3.2. Recursive Name Servers

As explained in [RFC4033], a security-aware recursive name server is an entity that acts in both the security-aware name server and security-aware resolver roles. This section uses the terms "name server side" and "resolver side" to refer to the code within a security-aware recursive name server that implements the security-aware name server role and the code that implements the security-aware resolver role, respectively. The resolver side follows the usual rules for caching and negative caching that would apply to any security-aware resolver.

3.2.1. The DO Bit

The resolver side of a security-aware recursive name server MUST set the DO bit when sending requests, regardless of the state of the DO bit in the initiating request received by the name server side. If the DO bit in an initiating query is not set, the name server side MUST strip any authenticating DNSSEC RRs from the response but MUST NOT strip any DNSSEC RR types that the initiating query explicitly requested.

3.2.2. The CD Bit

The CD bit exists in order to allow a security-aware resolver to disable signature validation in a security-aware name server's processing of a particular query. The name server side MUST copy the setting of the CD bit from a query to the corresponding response. The name server side of a security-aware recursive name server MUST pass the state of the CD bit to the resolver side along with the rest
Top   ToC   RFC4035 - Page 18
   of an initiating query, so that the resolver side will know whether
   it is required to verify the response data it returns to the name
   server side.  If the CD bit is set, it indicates that the originating
   resolver is willing to perform whatever authentication its local
   policy requires.  Thus, the resolver side of the recursive name
   server need not perform authentication on the RRsets in the response.
   When the CD bit is set, the recursive name server SHOULD, if
   possible, return the requested data to the originating resolver, even
   if the recursive name server's local authentication policy would
   reject the records in question.  That is, by setting the CD bit, the
   originating resolver has indicated that it takes responsibility for
   performing its own authentication, and the recursive name server
   should not interfere.

   If the resolver side implements a BAD cache (see Section 4.7) and the
   name server side receives a query that matches an entry in the
   resolver side's BAD cache, the name server side's response depends on
   the state of the CD bit in the original query.  If the CD bit is set,
   the name server side SHOULD return the data from the BAD cache; if
   the CD bit is not set, the name server side MUST return RCODE 2
   (server failure).

   The intent of the above rule is to provide the raw data to clients
   that are capable of performing their own signature verification
   checks while protecting clients that depend on the resolver side of a
   security-aware recursive name server to perform such checks.  Several
   of the possible reasons why signature validation might fail involve
   conditions that may not apply equally to the recursive name server
   and the client that invoked it.  For example, the recursive name
   server's clock may be set incorrectly, or the client may have
   knowledge of a relevant island of security that the recursive name
   server does not share.  In such cases, "protecting" a client that is
   capable of performing its own signature validation from ever seeing
   the "bad" data does not help the client.

3.2.3. The AD Bit

The name server side of a security-aware recursive name server MUST NOT set the AD bit in a response unless the name server considers all RRsets in the Answer and Authority sections of the response to be authentic. The name server side SHOULD set the AD bit if and only if the resolver side considers all RRsets in the Answer section and any relevant negative response RRs in the Authority section to be authentic. The resolver side MUST follow the procedure described in Section 5 to determine whether the RRs in question are authentic. However, for backward compatibility, a recursive name server MAY set the AD bit when a response includes unsigned CNAME RRs if those CNAME
Top   ToC   RFC4035 - Page 19
   RRs demonstrably could have been synthesized from an authentic DNAME
   RR that is also included in the response according to the synthesis
   rules described in [RFC2672].

3.3. Example DNSSEC Responses

See Appendix B for example response packets.


(page 19 continued on part 2)

Next Section