Tech-invite   3GPPspecs   Glossaries   IETFRFCs   Groups   SIP   ABNFs   Ti+   Search in Tech-invite

in Index   Prev   Next
in Index   None   Next  Group: ~dns

RFC 1034

Domain names - concepts and facilities

Pages: 55
STD 13
STD 13 is also:  1035
Obsoletes:  097308820883
Updated by:  110111831348187619822065218123082535403340344035434340354592593680208482
Part 1 of 3 – Pages 1 to 18
None   None   Next

ToP   noToC   Page 1
Network Working Group                                     P. Mockapetris
Request for Comments: 1034                                           ISI
Obsoletes: RFCs 882, 883, 973                              November 1987



This RFC is an introduction to the Domain Name System (DNS), and omits
many details which can be found in a companion RFC, "Domain Names -
Implementation and Specification" [RFC-1035].  That RFC assumes that the
reader is familiar with the concepts discussed in this memo.

A subset of DNS functions and data types constitute an official
protocol.  The official protocol includes standard queries and their
responses and most of the Internet class data formats (e.g., host

However, the domain system is intentionally extensible.  Researchers are
continuously proposing, implementing and experimenting with new data
types, query types, classes, functions, etc.  Thus while the components
of the official protocol are expected to stay essentially unchanged and
operate as a production service, experimental behavior should always be
expected in extensions beyond the official protocol.  Experimental or
obsolete features are clearly marked in these RFCs, and such information
should be used with caution.

The reader is especially cautioned not to depend on the values which
appear in examples to be current or complete, since their purpose is
primarily pedagogical.  Distribution of this memo is unlimited.


This RFC introduces domain style names, their use for Internet mail and
host address support, and the protocols and servers used to implement
domain name facilities.

2.1. The history of domain names

The impetus for the development of the domain system was growth in the

   - Host name to address mappings were maintained by the Network
     Information Center (NIC) in a single file (HOSTS.TXT) which
     was FTPed by all hosts [RFC-952, RFC-953].  The total network
ToP   noToC   Page 2
     bandwidth consumed in distributing a new version by this
     scheme is proportional to the square of the number of hosts in
     the network, and even when multiple levels of FTP are used,
     the outgoing FTP load on the NIC host is considerable.
     Explosive growth in the number of hosts didn't bode well for
     the future.

   - The network population was also changing in character.  The
     timeshared hosts that made up the original ARPANET were being
     replaced with local networks of workstations.  Local
     organizations were administering their own names and
     addresses, but had to wait for the NIC to change HOSTS.TXT to
     make changes visible to the Internet at large.  Organizations
     also wanted some local structure on the name space.

   - The applications on the Internet were getting more
     sophisticated and creating a need for general purpose name

The result was several ideas about name spaces and their management
[IEN-116, RFC-799, RFC-819, RFC-830].  The proposals varied, but a
common thread was the idea of a hierarchical name space, with the
hierarchy roughly corresponding to organizational structure, and names
using "."  as the character to mark the boundary between hierarchy
levels.  A design using a distributed database and generalized resources
was described in [RFC-882, RFC-883].  Based on experience with several
implementations, the system evolved into the scheme described in this

The terms "domain" or "domain name" are used in many contexts beyond the
DNS described here.  Very often, the term domain name is used to refer
to a name with structure indicated by dots, but no relation to the DNS.
This is particularly true in mail addressing [Quarterman 86].

2.2. DNS design goals

The design goals of the DNS influence its structure.  They are:

   - The primary goal is a consistent name space which will be used
     for referring to resources.  In order to avoid the problems
     caused by ad hoc encodings, names should not be required to
     contain network identifiers, addresses, routes, or similar
     information as part of the name.

   - The sheer size of the database and frequency of updates
     suggest that it must be maintained in a distributed manner,
     with local caching to improve performance.  Approaches that
ToP   noToC   Page 3
     attempt to collect a consistent copy of the entire database
     will become more and more expensive and difficult, and hence
     should be avoided.  The same principle holds for the structure
     of the name space, and in particular mechanisms for creating
     and deleting names; these should also be distributed.

   - Where there tradeoffs between the cost of acquiring data, the
     speed of updates, and the accuracy of caches, the source of
     the data should control the tradeoff.

   - The costs of implementing such a facility dictate that it be
     generally useful, and not restricted to a single application.
     We should be able to use names to retrieve host addresses,
     mailbox data, and other as yet undetermined information.  All
     data associated with a name is tagged with a type, and queries
     can be limited to a single type.

   - Because we want the name space to be useful in dissimilar
     networks and applications, we provide the ability to use the
     same name space with different protocol families or
     management.  For example, host address formats differ between
     protocols, though all protocols have the notion of address.
     The DNS tags all data with a class as well as the type, so
     that we can allow parallel use of different formats for data
     of type address.

   - We want name server transactions to be independent of the
     communications system that carries them.  Some systems may
     wish to use datagrams for queries and responses, and only
     establish virtual circuits for transactions that need the
     reliability (e.g., database updates, long transactions); other
     systems will use virtual circuits exclusively.

   - The system should be useful across a wide spectrum of host
     capabilities.  Both personal computers and large timeshared
     hosts should be able to use the system, though perhaps in
     different ways.

2.3. Assumptions about usage

The organization of the domain system derives from some assumptions
about the needs and usage patterns of its user community and is designed
to avoid many of the the complicated problems found in general purpose
database systems.

The assumptions are:

   - The size of the total database will initially be proportional
ToP   noToC   Page 4
     to the number of hosts using the system, but will eventually
     grow to be proportional to the number of users on those hosts
     as mailboxes and other information are added to the domain

   - Most of the data in the system will change very slowly (e.g.,
     mailbox bindings, host addresses), but that the system should
     be able to deal with subsets that change more rapidly (on the
     order of seconds or minutes).

   - The administrative boundaries used to distribute
     responsibility for the database will usually correspond to
     organizations that have one or more hosts.  Each organization
     that has responsibility for a particular set of domains will
     provide redundant name servers, either on the organization's
     own hosts or other hosts that the organization arranges to

   - Clients of the domain system should be able to identify
     trusted name servers they prefer to use before accepting
     referrals to name servers outside of this "trusted" set.

   - Access to information is more critical than instantaneous
     updates or guarantees of consistency.  Hence the update
     process allows updates to percolate out through the users of
     the domain system rather than guaranteeing that all copies are
     simultaneously updated.  When updates are unavailable due to
     network or host failure, the usual course is to believe old
     information while continuing efforts to update it.  The
     general model is that copies are distributed with timeouts for
     refreshing.  The distributor sets the timeout value and the
     recipient of the distribution is responsible for performing
     the refresh.  In special situations, very short intervals can
     be specified, or the owner can prohibit copies.

   - In any system that has a distributed database, a particular
     name server may be presented with a query that can only be
     answered by some other server.  The two general approaches to
     dealing with this problem are "recursive", in which the first
     server pursues the query for the client at another server, and
     "iterative", in which the server refers the client to another
     server and lets the client pursue the query.  Both approaches
     have advantages and disadvantages, but the iterative approach
     is preferred for the datagram style of access.  The domain
     system requires implementation of the iterative approach, but
     allows the recursive approach as an option.
ToP   noToC   Page 5
The domain system assumes that all data originates in master files
scattered through the hosts that use the domain system.  These master
files are updated by local system administrators.  Master files are text
files that are read by a local name server, and hence become available
through the name servers to users of the domain system.  The user
programs access name servers through standard programs called resolvers.

The standard format of master files allows them to be exchanged between
hosts (via FTP, mail, or some other mechanism); this facility is useful
when an organization wants a domain, but doesn't want to support a name
server.  The organization can maintain the master files locally using a
text editor, transfer them to a foreign host which runs a name server,
and then arrange with the system administrator of the name server to get
the files loaded.

Each host's name servers and resolvers are configured by a local system
administrator [RFC-1033].  For a name server, this configuration data
includes the identity of local master files and instructions on which
non-local master files are to be loaded from foreign servers.  The name
server uses the master files or copies to load its zones.  For
resolvers, the configuration data identifies the name servers which
should be the primary sources of information.

The domain system defines procedures for accessing the data and for
referrals to other name servers.  The domain system also defines
procedures for caching retrieved data and for periodic refreshing of
data defined by the system administrator.

The system administrators provide:

   - The definition of zone boundaries.

   - Master files of data.

   - Updates to master files.

   - Statements of the refresh policies desired.

The domain system provides:

   - Standard formats for resource data.

   - Standard methods for querying the database.

   - Standard methods for name servers to refresh local data from
     foreign name servers.
ToP   noToC   Page 6
2.4. Elements of the DNS

The DNS has three major components:

     specifications for a tree structured name space and data
     associated with the names.  Conceptually, each node and leaf
     of the domain name space tree names a set of information, and
     query operations are attempts to extract specific types of
     information from a particular set.  A query names the domain
     name of interest and describes the type of resource
     information that is desired.  For example, the Internet
     uses some of its domain names to identify hosts; queries for
     address resources return Internet host addresses.

   - NAME SERVERS are server programs which hold information about
     the domain tree's structure and set information.  A name
     server may cache structure or set information about any part
     of the domain tree, but in general a particular name server
     has complete information about a subset of the domain space,
     and pointers to other name servers that can be used to lead to
     information from any part of the domain tree.  Name servers
     know the parts of the domain tree for which they have complete
     information; a name server is said to be an AUTHORITY for
     these parts of the name space.  Authoritative information is
     organized into units called ZONEs, and these zones can be
     automatically distributed to the name servers which provide
     redundant service for the data in a zone.

   - RESOLVERS are programs that extract information from name
     servers in response to client requests.  Resolvers must be
     able to access at least one name server and use that name
     server's information to answer a query directly, or pursue the
     query using referrals to other name servers.  A resolver will
     typically be a system routine that is directly accessible to
     user programs; hence no protocol is necessary between the
     resolver and the user program.

These three components roughly correspond to the three layers or views
of the domain system:

   - From the user's point of view, the domain system is accessed
     through a simple procedure or OS call to a local resolver.
     The domain space consists of a single tree and the user can
     request information from any section of the tree.

   - From the resolver's point of view, the domain system is
     composed of an unknown number of name servers.  Each name
ToP   noToC   Page 7
     server has one or more pieces of the whole domain tree's data,
     but the resolver views each of these databases as essentially

   - From a name server's point of view, the domain system consists
     of separate sets of local information called zones.  The name
     server has local copies of some of the zones.  The name server
     must periodically refresh its zones from master copies in
     local files or foreign name servers.  The name server must
     concurrently process queries that arrive from resolvers.

In the interests of performance, implementations may couple these
functions.  For example, a resolver on the same machine as a name server
might share a database consisting of the the zones managed by the name
server and the cache managed by the resolver.


3.1. Name space specifications and terminology

The domain name space is a tree structure.  Each node and leaf on the
tree corresponds to a resource set (which may be empty).  The domain
system makes no distinctions between the uses of the interior nodes and
leaves, and this memo uses the term "node" to refer to both.

Each node has a label, which is zero to 63 octets in length.  Brother
nodes may not have the same label, although the same label can be used
for nodes which are not brothers.  One label is reserved, and that is
the null (i.e., zero length) label used for the root.

The domain name of a node is the list of the labels on the path from the
node to the root of the tree.  By convention, the labels that compose a
domain name are printed or read left to right, from the most specific
(lowest, farthest from the root) to the least specific (highest, closest
to the root).

Internally, programs that manipulate domain names should represent them
as sequences of labels, where each label is a length octet followed by
an octet string.  Because all domain names end at the root, which has a
null string for a label, these internal representations can use a length
byte of zero to terminate a domain name.

By convention, domain names can be stored with arbitrary case, but
domain name comparisons for all present domain functions are done in a
case-insensitive manner, assuming an ASCII character set, and a high
order zero bit.  This means that you are free to create a node with
label "A" or a node with label "a", but not both as brothers; you could
refer to either using "a" or "A".  When you receive a domain name or
ToP   noToC   Page 8
label, you should preserve its case.  The rationale for this choice is
that we may someday need to add full binary domain names for new
services; existing services would not be changed.

When a user needs to type a domain name, the length of each label is
omitted and the labels are separated by dots (".").  Since a complete
domain name ends with the root label, this leads to a printed form which
ends in a dot.  We use this property to distinguish between:

   - a character string which represents a complete domain name
     (often called "absolute").  For example, "poneria.ISI.EDU."

   - a character string that represents the starting labels of a
     domain name which is incomplete, and should be completed by
     local software using knowledge of the local domain (often
     called "relative").  For example, "poneria" used in the
     ISI.EDU domain.

Relative names are either taken relative to a well known origin, or to a
list of domains used as a search list.  Relative names appear mostly at
the user interface, where their interpretation varies from
implementation to implementation, and in master files, where they are
relative to a single origin domain name.  The most common interpretation
uses the root "." as either the single origin or as one of the members
of the search list, so a multi-label relative name is often one where
the trailing dot has been omitted to save typing.

To simplify implementations, the total number of octets that represent a
domain name (i.e., the sum of all label octets and label lengths) is
limited to 255.

A domain is identified by a domain name, and consists of that part of
the domain name space that is at or below the domain name which
specifies the domain.  A domain is a subdomain of another domain if it
is contained within that domain.  This relationship can be tested by
seeing if the subdomain's name ends with the containing domain's name.
For example, A.B.C.D is a subdomain of B.C.D, C.D, D, and " ".

3.2. Administrative guidelines on use

As a matter of policy, the DNS technical specifications do not mandate a
particular tree structure or rules for selecting labels; its goal is to
be as general as possible, so that it can be used to build arbitrary
applications.  In particular, the system was designed so that the name
space did not have to be organized along the lines of network
boundaries, name servers, etc.  The rationale for this is not that the
name space should have no implied semantics, but rather that the choice
of implied semantics should be left open to be used for the problem at
ToP   noToC   Page 9
hand, and that different parts of the tree can have different implied
semantics.  For example, the IN-ADDR.ARPA domain is organized and
distributed by network and host address because its role is to translate
from network or host numbers to names; NetBIOS domains [RFC-1001, RFC-
1002] are flat because that is appropriate for that application.

However, there are some guidelines that apply to the "normal" parts of
the name space used for hosts, mailboxes, etc., that will make the name
space more uniform, provide for growth, and minimize problems as
software is converted from the older host table.  The political
decisions about the top levels of the tree originated in RFC-920.
Current policy for the top levels is discussed in [RFC-1032].  MILNET
conversion issues are covered in [RFC-1031].

Lower domains which will eventually be broken into multiple zones should
provide branching at the top of the domain so that the eventual
decomposition can be done without renaming.  Node labels which use
special characters, leading digits, etc., are likely to break older
software which depends on more restrictive choices.

3.3. Technical guidelines on use

Before the DNS can be used to hold naming information for some kind of
object, two needs must be met:

   - A convention for mapping between object names and domain
     names.  This describes how information about an object is

   - RR types and data formats for describing the object.

These rules can be quite simple or fairly complex.  Very often, the
designer must take into account existing formats and plan for upward
compatibility for existing usage.  Multiple mappings or levels of
mapping may be required.

For hosts, the mapping depends on the existing syntax for host names
which is a subset of the usual text representation for domain names,
together with RR formats for describing host addresses, etc.  Because we
need a reliable inverse mapping from address to host name, a special
mapping for addresses into the IN-ADDR.ARPA domain is also defined.

For mailboxes, the mapping is slightly more complex.  The usual mail
address <local-part>@<mail-domain> is mapped into a domain name by
converting <local-part> into a single label (regardles of dots it
contains), converting <mail-domain> into a domain name using the usual
text format for domain names (dots denote label breaks), and
concatenating the two to form a single domain name.  Thus the mailbox
ToP   noToC   Page 10
HOSTMASTER@SRI-NIC.ARPA is represented as a domain name by
HOSTMASTER.SRI-NIC.ARPA.  An appreciation for the reasons behind this
design also must take into account the scheme for mail exchanges [RFC-

The typical user is not concerned with defining these rules, but should
understand that they usually are the result of numerous compromises
between desires for upward compatibility with old usage, interactions
between different object definitions, and the inevitable urge to add new
features when defining the rules.  The way the DNS is used to support
some object is often more crucial than the restrictions inherent in the

3.4. Example name space

The following figure shows a part of the current domain name space, and
is used in many examples in this RFC.  Note that the tree is a very
small subset of the actual name space.

             |                     |                  |
            MIL                   EDU                ARPA
             |                     |                  |
             |                     |                  |
       +-----+-----+               |     +------+-----+-----+
       |     |     |               |     |      |           |
      BRL  NOSC  DARPA             |  IN-ADDR  SRI-NIC     ACC
       |        |                  |               |        |
      UCI      MIT                 |              UDEL     YALE
                |                 ISI
                |                  |
            +---+---+              |
            |       |              |
           LCS  ACHILLES  +--+-----+-----+--------+
            |             |  |     |     |        |
            XX            A  C   VAXA  VENERA Mockapetris

In this example, the root domain has three immediate subdomains: MIL,
EDU, and ARPA.  The LCS.MIT.EDU domain has one immediate subdomain named
XX.LCS.MIT.EDU.  All of the leaves are also domains.

3.5. Preferred name syntax

The DNS specifications attempt to be as general as possible in the rules
ToP   noToC   Page 11
for constructing domain names.  The idea is that the name of any
existing object can be expressed as a domain name with minimal changes.
However, when assigning a domain name for an object, the prudent user
will select a name which satisfies both the rules of the domain system
and any existing rules for the object, whether these rules are published
or implied by existing programs.

For example, when naming a mail domain, the user should satisfy both the
rules of this memo and those in RFC-822.  When creating a new host name,
the old rules for HOSTS.TXT should be followed.  This avoids problems
when old software is converted to use domain names.

The following syntax will result in fewer problems with many
applications that use domain names (e.g., mail, TELNET).

<domain> ::= <subdomain> | " "

<subdomain> ::= <label> | <subdomain> "." <label>

<label> ::= <letter> [ [ <ldh-str> ] <let-dig> ]

<ldh-str> ::= <let-dig-hyp> | <let-dig-hyp> <ldh-str>

<let-dig-hyp> ::= <let-dig> | "-"

<let-dig> ::= <letter> | <digit>

<letter> ::= any one of the 52 alphabetic characters A through Z in
upper case and a through z in lower case

<digit> ::= any one of the ten digits 0 through 9

Note that while upper and lower case letters are allowed in domain
names, no significance is attached to the case.  That is, two names with
the same spelling but different case are to be treated as if identical.

The labels must follow the rules for ARPANET host names.  They must
start with a letter, end with a letter or digit, and have as interior
characters only letters, digits, and hyphen.  There are also some
restrictions on the length.  Labels must be 63 characters or less.

For example, the following strings identify hosts in the Internet:


3.6. Resource Records

A domain name identifies a node.  Each node has a set of resource
ToP   noToC   Page 12
information, which may be empty.  The set of resource information
associated with a particular name is composed of separate resource
records (RRs).  The order of RRs in a set is not significant, and need
not be preserved by name servers, resolvers, or other parts of the DNS.

When we talk about a specific RR, we assume it has the following:

owner           which is the domain name where the RR is found.

type            which is an encoded 16 bit value that specifies the type
                of the resource in this resource record.  Types refer to
                abstract resources.

                This memo uses the following types:

                A               a host address

                CNAME           identifies the canonical name of an

                HINFO           identifies the CPU and OS used by a host

                MX              identifies a mail exchange for the
                                domain.  See [RFC-974 for details.

                the authoritative name server for the domain

                a pointer to another part of the domain name space

                identifies the start of a zone of authority]

class           which is an encoded 16 bit value which identifies a
                protocol family or instance of a protocol.

                This memo uses the following classes:

                IN              the Internet system

                CH              the Chaos system

TTL             which is the time to live of the RR.  This field is a 32
                bit integer in units of seconds, an is primarily used by
                resolvers when they cache RRs.  The TTL describes how
                long a RR can be cached before it should be discarded.
ToP   noToC   Page 13
RDATA           which is the type and sometimes class dependent data
                which describes the resource:

                A               For the IN class, a 32 bit IP address

                                For the CH class, a domain name followed
                                by a 16 bit octal Chaos address.

                CNAME           a domain name.

                MX              a 16 bit preference value (lower is
                                better) followed by a host name willing
                                to act as a mail exchange for the owner

                NS              a host name.

                PTR             a domain name.

                SOA             several fields.

The owner name is often implicit, rather than forming an integral part
of the RR.  For example, many name servers internally form tree or hash
structures for the name space, and chain RRs off nodes.  The remaining
RR parts are the fixed header (type, class, TTL) which is consistent for
all RRs, and a variable part (RDATA) that fits the needs of the resource
being described.

The meaning of the TTL field is a time limit on how long an RR can be
kept in a cache.  This limit does not apply to authoritative data in
zones; it is also timed out, but by the refreshing policies for the
zone.  The TTL is assigned by the administrator for the zone where the
data originates.  While short TTLs can be used to minimize caching, and
a zero TTL prohibits caching, the realities of Internet performance
suggest that these times should be on the order of days for the typical
host.  If a change can be anticipated, the TTL can be reduced prior to
the change to minimize inconsistency during the change, and then
increased back to its former value following the change.

The data in the RDATA section of RRs is carried as a combination of
binary strings and domain names.  The domain names are frequently used
as "pointers" to other data in the DNS.

3.6.1. Textual expression of RRs

RRs are represented in binary form in the packets of the DNS protocol,
and are usually represented in highly encoded form when stored in a name
server or resolver.  In this memo, we adopt a style similar to that used
ToP   noToC   Page 14
in master files in order to show the contents of RRs.  In this format,
most RRs are shown on a single line, although continuation lines are
possible using parentheses.

The start of the line gives the owner of the RR.  If a line begins with
a blank, then the owner is assumed to be the same as that of the
previous RR.  Blank lines are often included for readability.

Following the owner, we list the TTL, type, and class of the RR.  Class
and type use the mnemonics defined above, and TTL is an integer before
the type field.  In order to avoid ambiguity in parsing, type and class
mnemonics are disjoint, TTLs are integers, and the type mnemonic is
always last. The IN class and TTL values are often omitted from examples
in the interests of clarity.

The resource data or RDATA section of the RR are given using knowledge
of the typical representation for the data.

For example, we might show the RRs carried in a message as:

    ISI.EDU.        MX      10 VENERA.ISI.EDU.
                    MX      10 VAXA.ISI.EDU.

The MX RRs have an RDATA section which consists of a 16 bit number
followed by a domain name.  The address RRs use a standard IP address
format to contain a 32 bit internet address.

This example shows six RRs, with two RRs at each of three domain names.

Similarly we might see:

    XX.LCS.MIT.EDU. IN      A
                    CH      A       MIT.EDU. 2420

This example shows two addresses for XX.LCS.MIT.EDU, each of a different

3.6.2. Aliases and canonical names

In existing systems, hosts and other resources often have several names
that identify the same resource.  For example, the names C.ISI.EDU and
USC-ISIC.ARPA both identify the same host.  Similarly, in the case of
mailboxes, many organizations provide many names that actually go to the
same mailbox; for example Mockapetris@C.ISI.EDU, Mockapetris@B.ISI.EDU,
ToP   noToC   Page 15
and PVM@ISI.EDU all go to the same mailbox (although the mechanism
behind this is somewhat complicated).

Most of these systems have a notion that one of the equivalent set of
names is the canonical or primary name and all others are aliases.

The domain system provides such a feature using the canonical name
(CNAME) RR.  A CNAME RR identifies its owner name as an alias, and
specifies the corresponding canonical name in the RDATA section of the
RR.  If a CNAME RR is present at a node, no other data should be
present; this ensures that the data for a canonical name and its aliases
cannot be different.  This rule also insures that a cached CNAME can be
used without checking with an authoritative server for other RR types.

CNAME RRs cause special action in DNS software.  When a name server
fails to find a desired RR in the resource set associated with the
domain name, it checks to see if the resource set consists of a CNAME
record with a matching class.  If so, the name server includes the CNAME
record in the response and restarts the query at the domain name
specified in the data field of the CNAME record.  The one exception to
this rule is that queries which match the CNAME type are not restarted.

For example, suppose a name server was processing a query with for USC-
ISIC.ARPA, asking for type A information, and had the following resource


    C.ISI.EDU       IN      A

Both of these RRs would be returned in the response to the type A query,
while a type CNAME or * query should return just the CNAME.

Domain names in RRs which point at another name should always point at
the primary name and not the alias.  This avoids extra indirections in
accessing information.  For example, the address to name RR for the
above host should be:  IN      PTR     C.ISI.EDU

rather than pointing at USC-ISIC.ARPA.  Of course, by the robustness
principle, domain software should not fail when presented with CNAME
chains or loops; CNAME chains should be followed and CNAME loops
signalled as an error.

3.7. Queries

Queries are messages which may be sent to a name server to provoke a
ToP   noToC   Page 16
response.  In the Internet, queries are carried in UDP datagrams or over
TCP connections.  The response by the name server either answers the
question posed in the query, refers the requester to another set of name
servers, or signals some error condition.

In general, the user does not generate queries directly, but instead
makes a request to a resolver which in turn sends one or more queries to
name servers and deals with the error conditions and referrals that may
result.  Of course, the possible questions which can be asked in a query
does shape the kind of service a resolver can provide.

DNS queries and responses are carried in a standard message format.  The
message format has a header containing a number of fixed fields which
are always present, and four sections which carry query parameters and

The most important field in the header is a four bit field called an
opcode which separates different queries.  Of the possible 16 values,
one (standard query) is part of the official protocol, two (inverse
query and status query) are options, one (completion) is obsolete, and
the rest are unassigned.

The four sections are:

Question        Carries the query name and other query parameters.

Answer          Carries RRs which directly answer the query.

Authority       Carries RRs which describe other authoritative servers.
                May optionally carry the SOA RR for the authoritative
                data in the answer section.

Additional      Carries RRs which may be helpful in using the RRs in the
                other sections.

Note that the content, but not the format, of these sections varies with
header opcode.

3.7.1. Standard queries

A standard query specifies a target domain name (QNAME), query type
(QTYPE), and query class (QCLASS) and asks for RRs which match.  This
type of query makes up such a vast majority of DNS queries that we use
the term "query" to mean standard query unless otherwise specified.  The
QTYPE and QCLASS fields are each 16 bits long, and are a superset of
defined types and classes.
ToP   noToC   Page 17
The QTYPE field may contain:

<any type>      matches just that type. (e.g., A, PTR).

AXFR            special zone transfer QTYPE.

MAILB           matches all mail box related RRs (e.g. MB and MG).

*               matches all RR types.

The QCLASS field may contain:

<any class>     matches just that class (e.g., IN, CH).

*               matches aLL RR classes.

Using the query domain name, QTYPE, and QCLASS, the name server looks
for matching RRs.  In addition to relevant records, the name server may
return RRs that point toward a name server that has the desired
information or RRs that are expected to be useful in interpreting the
relevant RRs.  For example, a name server that doesn't have the
requested information may know a name server that does; a name server
that returns a domain name in a relevant RR may also return the RR that
binds that domain name to an address.

For example, a mailer tying to send mail to Mockapetris@ISI.EDU might
ask the resolver for mail information about ISI.EDU, resulting in a
query for QNAME=ISI.EDU, QTYPE=MX, QCLASS=IN.  The response's answer
section would be:

    ISI.EDU.        MX      10 VENERA.ISI.EDU.
                    MX      10 VAXA.ISI.EDU.

while the additional section might be:


Because the server assumes that if the requester wants mail exchange
information, it will probably want the addresses of the mail exchanges
soon afterward.

Note that the QCLASS=* construct requires special interpretation
regarding authority.  Since a particular name server may not know all of
the classes available in the domain system, it can never know if it is
authoritative for all classes.  Hence responses to QCLASS=* queries can
ToP   noToC   Page 18
never be authoritative.

3.7.2. Inverse queries (Optional)

Name servers may also support inverse queries that map a particular
resource to a domain name or domain names that have that resource.  For
example, while a standard query might map a domain name to a SOA RR, the
corresponding inverse query might map the SOA RR back to the domain

Implementation of this service is optional in a name server, but all
name servers must at least be able to understand an inverse query
message and return a not-implemented error response.

The domain system cannot guarantee the completeness or uniqueness of
inverse queries because the domain system is organized by domain name
rather than by host address or any other resource type.  Inverse queries
are primarily useful for debugging and database maintenance activities.

Inverse queries may not return the proper TTL, and do not indicate cases
where the identified RR is one of a set (for example, one address for a
host having multiple addresses).  Therefore, the RRs returned in inverse
queries should never be cached.

Inverse queries are NOT an acceptable method for mapping host addresses
to host names; use the IN-ADDR.ARPA domain instead.

A detailed discussion of inverse queries is contained in [RFC-1035].

3.8. Status queries (Experimental)

To be defined.

3.9. Completion queries (Obsolete)

The optional completion services described in RFCs 882 and 883 have been
deleted.  Redesigned services may become available in the future, or the
opcodes may be reclaimed for other use.

(page 18 continued on part 2)

Next Section