Tech-invite3GPPspaceIETF RFCsSIP
9190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 8832

WebRTC Data Channel Establishment Protocol

Pages: ~12
IETF/art/rtcweb/draft-ietf-rtcweb-data-protocol-09
Proposed Standard
Errata

Top   ToC   RFCv3-8832
R. Jesup
Mozilla
S. Loreto
Ericsson
M. Tüxen
Münster University of Applied Sciences
January 2021

WebRTC Data Channel Establishment Protocol

Abstract

The WebRTC framework specifies protocol support for direct interactive rich communication using audio, video, and data between two peers' web browsers. This document specifies a simple protocol for establishing symmetric data channels between the peers. It uses a two-way handshake and allows sending of user data without waiting for the handshake to complete.

Status of This Memo

This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8832.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Top   ToC   RFCv3-8832

1.  Introduction

The Data Channel Establishment Protocol (DCEP) is designed to provide, in the WebRTC data channel context [RFC 8831], a simple in-band method for opening symmetric data channels. As discussed in [RFC 8831], the protocol uses the Stream Control Transmission Protocol (SCTP) [RFC 4960] encapsulated in Datagram Transport Layer Security (DTLS) (described in [RFC 8261]). This allows DCEP to benefit from the already standardized transport and security features of SCTP and DTLS. DTLS 1.0 is defined in [RFC 4347]; the present latest version, DTLS 1.2, is defined in [RFC 6347]; and an upcoming version, DTLS 1.3, is defined in [TLS-DTLS13].
Top   ToC   RFCv3-8832

2.  Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP?14 [RFC 2119] [RFC 8174] when, and only when, they appear in all capitals, as shown here.
Top   ToC   RFCv3-8832

3.  Terminology

This document uses the following terms:
Association:
An SCTP association.
Stream:
A unidirectional stream of an SCTP association. It is uniquely identifiedby an SCTP stream identifier (0-65534).Note: The SCTP stream identifier 65535 is reserved due to SCTP INIT andINIT-ACK chunks only allowing a maximum of 65535 streams to benegotiated (0-65534).
Stream Identifier:
The SCTP stream identifier uniquely identifying a stream.
Data Channel:
Two streams with the same stream identifier, one in each direction,which are managed together.
Top   ToC   RFCv3-8832

4.  Protocol Overview

The Data Channel Establishment Protocol is a simple, low-overhead way to establish bidirectional data channels over an SCTP association with a consistent set of properties.
The set of consistent properties includes:
  • reliable or unreliable message transmission. In case of unreliable transmissions, the same level of unreliability is used.
  • in-order or out-of-order message delivery.
  • the priority of the data channel.
  • an optional label for the data channel.
  • an optional protocol for the data channel.
  • the streams.
This protocol uses a two-way handshake to open a data channel. The handshake pairs one incoming and one outgoing stream, both having the same stream identifier, into a single bidirectional data channel. The peer that initiates opening a data channel selects a stream identifier for which the corresponding incoming and outgoing streams are unused and sends a DATA_CHANNEL_OPEN message on the outgoing stream. The peer responds with a DATA_CHANNEL_ACK message on its corresponding outgoing stream. Then the data channel is open. DCEP messages are sent on the same stream as the user messages belonging to the data channel. The demultiplexing is based on the SCTP Payload Protocol Identifier (PPID), since DCEP uses a specific PPID.
To avoid collisions where both sides try to open a data channel with the same stream identifiers, each side MUST use streams with either even or odd stream identifiers when sending a DATA_CHANNEL_OPEN message. When using SCTP over DTLS [RFC 8261], the method used to determine which side uses odd or even is based on the underlying DTLS connection role: the side acting as the DTLS client MUST use streams with even stream identifiers; the side acting as the DTLS server MUST use streams with odd stream identifiers.
The purpose of the protocol field is to ease cross-application interoperation ("federation") by identifying the user data being passed by means of an IANA-registered string from the "WebSocket Subprotocol Name Registry" defined in [RFC 6455]. The field may be useful for homogeneous applications that may create more than one type of data channel. Note that there is no attempt to ensure uniqueness for the protocol field.
Top   ToC   RFCv3-8832

5.  Message Formats

Every DCEP message starts with a one-byte field called "Message Type" that indicates the type of the message. The corresponding values are managed by IANA (see Section 8.2.1).

5.1.  DATA_CHANNEL_OPEN Message

This message is initially sent using the data channel on the stream used for user messages.
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Message Type |  Channel Type |            Priority           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    Reliability Parameter                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         Label Length          |       Protocol Length         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
\                                                               /
|                             Label                             |
/                                                               \
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
\                                                               /
|                            Protocol                           |
/                                                               \
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Message Type: 1 byte (unsigned integer)
This field holds the IANA-defined message type for the DATA_CHANNEL_OPEN message. The value of this field is 0x03, as specified in Section 8.2.1.
Channel Type: 1 byte (unsigned integer)
This field specifies the type of data channel to be opened. The values are managed by IANA (see Section 8.2.2):
DATA_CHANNEL_RELIABLE (0x00):
The data channel provides a reliable in-order bidirectional communication.
DATA_CHANNEL_RELIABLE_UNORDERED (0x80):
The data channel provides a reliable unordered bidirectional communication.
DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT (0x01):
The data channel provides a partially reliable in-order bidirectionalcommunication. User messages will not be retransmitted more timesthan specified in the Reliability Parameter.
DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT_UNORDERED (0x81):
The data channel provides a partially reliable unordered bidirectionalcommunication. User messages will not be retransmitted more timesthan specified in the Reliability Parameter.
DATA_CHANNEL_PARTIAL_RELIABLE_TIMED (0x02):
The data channel provides a partially reliable in-order bidirectionalcommunication. User messages might not be transmitted orretransmitted after a specified lifetime given in milliseconds in theReliability Parameter. This lifetime starts when providing the usermessage to the protocol stack.
DATA_CHANNEL_PARTIAL_RELIABLE_TIMED_UNORDERED (0x82):
The data channel provides a partially reliable unordered bidirectionalcommunication. User messages might not be transmitted orretransmitted after a specified lifetime given in milliseconds in theReliability Parameter. This lifetime starts when providing the usermessage to the protocol stack.
Priority: 2 bytes (unsigned integer)
The priority of the data channel, as described in [RFC 8831].
Reliability Parameter: 4 bytes (unsigned integer)
For reliable data channels, this field MUST be set to 0 on the sending side and MUST be ignored on the receiving side. If a partially reliable data channel with a limited number of retransmissions is used, this field specifies the number of retransmissions. If a partially reliable data channel with a limited lifetime is used, this field specifies the maximum lifetime in milliseconds. The following table summarizes this:
Channel Type Reliability Parameter
DATA_CHANNEL_RELIABLE Ignored
DATA_CHANNEL_RELIABLE_UNORDERED Ignored
DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT Number of RTX
DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT_UNORDERED Number of RTX
DATA_CHANNEL_PARTIAL_RELIABLE_TIMED Lifetime in ms
DATA_CHANNEL_PARTIAL_RELIABLE_TIMED_UNORDERED Lifetime in ms
Table 1
Label Length: 2 bytes (unsigned integer)
The length of the label field in bytes.
Protocol Length: 2 bytes (unsigned integer)
The length of the protocol field in bytes.
Label: Variable Length (sequence of characters)
The name of the data channel as a UTF-8-encoded string, as specified in [RFC 3629]. This may be an empty string.
Protocol: Variable Length (sequence of characters)
If this is an empty string, the protocol is unspecified. If it is a non-empty string, it specifies a protocol registered in the "WebSocket Subprotocol Name Registry" created in [RFC 6455]. This string is UTF-8 encoded, as specified in [RFC 3629].

5.2.  DATA_CHANNEL_ACK Message

This message is sent in response to a DATA_CHANNEL_OPEN_RESPONSE message. It is sent on the stream used for user messages using the data channel. Reception of this message tells the opener that the data channel setup handshake is complete.
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Message Type |
+-+-+-+-+-+-+-+-+
Message Type: 1 byte (unsigned integer)
This field holds the IANA-defined message type for the DATA_CHANNEL_ACK message. The value of this field is 0x02, as specified in Section 8.2.1.
Top   ToC   RFCv3-8832

6.  Procedures

All DCEP messages MUST be sent using ordered delivery and reliable transmission. They MUST be sent on the same outgoing stream as the user messages belonging to the corresponding data channel. Multiplexing and demultiplexing is done by using the SCTP PPID. Therefore, a DCEP message MUST be sent with the assigned PPID for the Data Channel Establishment Protocol (see Section 8.1). Other messages MUST NOT be sent using this PPID.
The peer that initiates opening a data channel selects a stream identifier for which the corresponding incoming and outgoing streams are unused. If the side is acting as the DTLS client, it MUST choose an even stream identifier; if the side is acting as the DTLS server, it MUST choose an odd one. The initiating peer fills in the parameters of the DATA_CHANNEL_OPEN message and sends it on the chosen stream.
If a DATA_CHANNEL_OPEN message is received on an unused stream, the stream identifier corresponds to the role of the peer, and all parameters in the DATA_CHANNEL_OPEN message are valid, then a corresponding DATA_CHANNEL_ACK message is sent on the stream with the same stream identifier as the one the DATA_CHANNEL_OPEN message was received on.
If the DATA_CHANNEL_OPEN message doesn't satisfy the conditions above, the receiver MUST close the corresponding data channel using the procedure described in [RFC 8831] and MUST NOT send a DATA_CHANNEL_ACK message in response to the received message. This might occur if, for example, a DATA_CHANNEL_OPEN message is received on an already used stream, there are problems with parameters within the DATA_CHANNEL_OPEN message, the odd/even rule is violated, or the DATA_CHANNEL_OPEN message itself is not well formed. Therefore, receiving an SCTP stream-reset request for a stream on which no DATA_CHANNEL_ACK message has been received indicates to the sender of the corresponding DATA_CHANNEL_OPEN message the failure of the data channel setup procedure. After also successfully resetting the corresponding outgoing stream, which concludes the data channel closing initiated by the peer, a new DATA_CHANNEL_OPEN message can be sent on the stream.
After the DATA_CHANNEL_OPEN message has been sent, the sender of that message MAY start sending messages containing user data without waiting for the reception of the corresponding DATA_CHANNEL_ACK message. However, before the DATA_CHANNEL_ACK message or any other message has been received on a data channel, all other messages containing user data and belonging to this data channel MUST be sent ordered, no matter whether the data channel is ordered or not. After the DATA_CHANNEL_ACK or any other message has been received on the data channel, messages containing user data MUST be sent ordered on ordered data channels and MUST be sent unordered on unordered data channels. Therefore, receiving a message containing user data on an unused stream indicates an error. In that case, the corresponding data channel MUST be closed, as described in [RFC 8831].
Top   ToC   RFCv3-8832

7.  Security Considerations

The DATA_CHANNEL_OPEN message contains two variable-length fields: the protocol and the label. A receiver must be prepared to receive DATA_CHANNEL_OPEN messages where these fields have the maximum length of 65535 bytes. Error cases such as using inconsistent lengths of fields, using unknown parameter values, or violating the odd/even rule must also be handled by closing the corresponding data channel. An end point must also be prepared for the peer to open the maximum number of data channels.
This protocol does not provide privacy, integrity, or authentication. It needs to be used as part of a protocol suite that contains all these things. Such a protocol suite is specified in [RFC 8261].
For general considerations, see [RFC 8826] and [RFC 8827].
Top   ToC   RFCv3-8832

8.  IANA Considerations

IANA has updated the reference of an already existing SCTP PPID assignment (Section 8.1) and created a new standalone registry with its own URL for DCEP (Section 8.2) containing two new registration tables (Sections [8.2.1] and [8.2.2]).

8.1.  SCTP Payload Protocol Identifier

This document uses an SCTP Payload Protocol Identifier (PPID) previously registered as "WebRTC Control". [RFC 4960] created the "SCTP Payload Protocol Identifiers" registry, in which this identifier was assigned. IANA has updated the PPID name from "WebRTC Control" to "WebRTC DCEP" and has updated the reference to point to this document. The corresponding date has been kept.
Therefore, this assignment now appears as follows:
Value SCTP PPID Reference Date
WebRTC DCEP 50 RFC 8832 2013-09-20
Table 2

8.2.  New Standalone Registry for DCEP

IANA has created the "Data Channel Establishment Protocol (DCEP) Parameters" registry. It contains the two tables provided in Sections [8.2.1] and [8.2.2].

8.2.1.  New Message Type Registry

IANA has created the "Message Types" registry for DCEP to manage the one-byte "Message Type" field in DCEP messages (see Section 5). This registration table is a subregistry of the registry described in Section 8.2.
The assignment of new message types is done through an RFC Required action, as defined in [RFC 8126]. Documentation of new message types MUST contain the following information:
  1. A name for the new message type.
  2. A detailed procedural description of how each message type is used with within DCEP.
The following are the initial registrations:
Name Type Reference
Reserved 0x00 RFC 8832
Reserved 0x01 RFC 8832
DATA_CHANNEL_ACK 0x02 RFC 8832
DATA_CHANNEL_OPEN 0x03 RFC 8832
Unassigned 0x04-0xfe
Reserved 0xff RFC 8832
Table 3
Note that values 0x00 and 0x01 are reserved to avoid interoperability problems, since they have been used in draft versions of the document. The value 0xff has been reserved for future extensibility. The range of possible values is from 0x00 to 0xff.

8.2.2.  New Channel Type Registry

IANA has created the "Channel Types" registry for DCEP to manage the one-byte "Channel Type" field in DATA_CHANNEL_OPEN messages (see Section 5.1). This registration table is a subregistry within the registry described in Section 8.2.
The assignment of new message types is done through an RFC Required action, as defined in [RFC 8126]. Documentation of new Channel Types MUST contain the following information:
  1. A name for the new Channel Type.
  2. A detailed procedural description of the user message handling for data channels using this new Channel Type.
If new Channel Types support ordered and unordered message delivery, the high-order bit MUST be used to indicate whether or not the message delivery is unordered.
The following are the initial registrations:
Name Type Reference
DATA_CHANNEL_RELIABLE 0x00 RFC 8832
DATA_CHANNEL_RELIABLE_UNORDERED 0x80 RFC 8832
DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT 0x01 RFC 8832
DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT_UNORDERED 0x81 RFC 8832
DATA_CHANNEL_PARTIAL_RELIABLE_TIMED 0x02 RFC 8832
DATA_CHANNEL_PARTIAL_RELIABLE_TIMED_UNORDERED 0x82 RFC 8832
Reserved 0x7f RFC 8832
Reserved 0xff RFC 8832
Unassigned rest
Table 4
Values 0x7f and 0xff have been reserved for future extensibility. The range of possible values is from 0x00 to 0xff.
Top   ToC   RFCv3-8832

9.  References

9.1.  Normative References

[RFC2119]
S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC8174]
B. Leiba, "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017,
<https://www.rfc-editor.org/info/rfc8174>.
[RFC3629]
F. Yergeau, "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November 2003,
<https://www.rfc-editor.org/info/rfc3629>.
[RFC4960]
R. Stewart, "Stream Control Transmission Protocol", RFC 4960, DOI 10.17487/RFC4960, September 2007,
<https://www.rfc-editor.org/info/rfc4960>.
[RFC8126]
M. Cotton, B. Leiba, and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June 2017,
<https://www.rfc-editor.org/info/rfc8126>.
[RFC8261]
M. Tuexen, R. Stewart, R. Jesup, and S. Loreto, "Datagram Transport Layer Security (DTLS) Encapsulation of SCTP Packets", RFC 8261, DOI 10.17487/RFC8261, November 2017,
<https://www.rfc-editor.org/info/rfc8261>.
[RFC8831]
R Jesup, S Loreto, and M Tüxen, "WebRTC Data Channels", RFC 8831, DOI 10.17487/RFC8831, January 2021,
<https://www.rfc-editor.org/info/rfc8831>.

9.2.  Informative References

[RFC4347]
E. Rescorla, and N. Modadugu, "Datagram Transport Layer Security", RFC 4347, DOI 10.17487/RFC4347, April 2006,
<https://www.rfc-editor.org/info/rfc4347>.
[RFC6347]
E. Rescorla, and N. Modadugu, "Datagram Transport Layer Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347, January 2012,
<https://www.rfc-editor.org/info/rfc6347>.
[RFC6455]
I. Fette, and A. Melnikov, "The WebSocket Protocol", RFC 6455, DOI 10.17487/RFC6455, December 2011,
<https://www.rfc-editor.org/info/rfc6455>.
[RFC8826]
E. Rescorla, "Security Considerations for WebRTC", RFC 8826, DOI 10.17487/RFC8826, January 2021,
<https://www.rfc-editor.org/info/rfc8826>.
[RFC8827]
E. Rescorla, "WebRTC Security Architecture", RFC 8827, DOI 10.17487/RFC8827, January 2021,
<https://www.rfc-editor.org/info/rfc8827>.
[TLS-DTLS13]
Google, Inc., E. Rescorla, H. Tschofenig, and N. Modadugu, "The Datagram Transport Layer Security (DTLS) Protocol Version 1.3", Internet-Draft draft-ietf-tls-dtls13-39, November 2020,
<https://tools.ietf.org/html/draft-ietf-tls-dtls13-39>.
Top   ToC   RFCv3-8832

Acknowledgements

The authors wish to thank Harald Alvestrand, Richard Barnes, Adam Bergkvist, Spencer Dawkins, Barry Dingle, Stefan Håkansson, Cullen Jennings, Paul Kyzivat, Doug Leonard, Alexey Melnikov, Pete Resnick, Irene Rüngeler, Randall Stewart, Peter Thatcher, Martin Thomson, Justin Uberti, and many others for their invaluable comments.
Top   ToC   RFCv3-8832

Authors' Addresses

Randell Jesup

Mozilla
United States of America

Salvatore Loreto

Ericsson
Hirsalantie 11
Jorvas   02420
Finland

Michael Tüxen

Münster University of Applied Sciences
Stegerwaldstrasse 39
Steinfurt   48565
Germany
Top   ToC