in Index   Prev   Next

RFC 5158

6to4 Reverse DNS Delegation Specification

Pages: 12
Updated by:  8996

ToP   noToC   RFC5158 - Page 1
Network Working Group                                          G. Huston
Request for Comments: 5158                                         APNIC
Category: Informational                                       March 2008

               6to4 Reverse DNS Delegation Specification

Status of This Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.


This memo describes the service mechanism for entering a delegation of DNS servers that provide reverse lookup of 6to4 IPv6 addresses into the 6to4 reverse zone file. The mechanism is based on a conventional DNS delegation service interface, allowing the service client to enter the details of a number of DNS servers for the delegated domain. In the context of a 6to4 reverse delegation, the client is primarily authenticated by its source address used in the delegation request, and is authorized to use the function if its IPv6 address prefix corresponds to an address from within the requested 6to4 delegation address block.
ToP   noToC   RFC5158 - Page 2

1. Introduction

6to4 [RFC3056] defines a mechanism for allowing isolated IPv6 sites to communicate using IPv6 over the public IPv4 Internet. This is achieved through the use of a dedicated IPv6 global unicast address prefix. A 6to4 'router' can use its IPv4 address value in conjunction with this global prefix to create a local IPv6 site prefix. Local IPv6 hosts use this site prefix to form their local IPv6 address. This address structure allows any site that is connected to the IPv4 Internet the ability to use IPv6 via automatically created IPv6 over IPv4 tunnels. The advantage of this approach is that it allows the piecemeal deployment of IPv6 using tunnels to traverse IPv4 network segments. A local site can connect to an IPv6 network without necessarily obtaining IPv6 services from its adjacent upstream network provider. As noted in [6to4-dns], the advantage of this approach is that: "it decouples deployment of IPv6 by the core of the network (e.g. Internet Service Providers or ISPs) from deployment of IPv6 at the edges (e.g. customer sites), allowing each site or ISP to deploy IPv6 support in its own time frame according to its own priorities. With 6to4, the edges may communicate with one another using IPv6 even if one or more of their ISPs do not yet provide native IPv6 service." The particular question here is the task of setting up a set of delegations that allows "reverse lookups" for this address space. "[This] requires that there be a delegation path for the IP address being queried, from the DNS root to the servers for the [DNS] zone which provides the PTR records for that IP address. For ordinary IPv6 addresses, the necessary DNS servers and records for IPv6 reverse lookups would be maintained by the each organization to which an address block is delegated; the delegation path of DNS records reflects the delegation of address blocks themselves. However, for IPv6 addresses beginning with the 6to4 address prefix, the DNS records would need to reflect IPv4 address delegation. Since the entire motivation of 6to4 is to decouple site deployment of IPv6 from infrastructure deployment of IPv6, such records cannot be expected to be present for a site using 6to4 - especially for a site whose ISP did not yet support IPv6 in any form." [6to4-dns]
ToP   noToC   RFC5158 - Page 3
   The desired characteristics of a reverse lookup delegation mechanism
   are that it:

      *  is deployable with minimal overhead or tool development

      *  has no impact on existing DNS software and existing DNS

      *  performs name lookup efficiently

      *  does not compromise any DNS security functions

2. Potential Approaches

There are a number of approaches to this problem, ranging from a conventional explicit delegation structure to various forms of modified server behaviors that attempt to guess the location of non- delegated servers for fragments of this address space. These approaches have been explored in some detail in terms of their advantages and drawbacks in [6to4-dns], so only a summary of these approaches will be provided here.

2.1. Conventional Address Delegation

The problem with this form of delegation is the anticipated piecemeal deployment of 6to4 sites. The reason why an end site would use 6to4 is commonly that the upstream Internet Service Provider does not support an IPv6 transit service and the end site is using 6to4 to tunnel through to IPv6 connectivity. A conventional end site environment of this form would have the end site using provider-based IPv4 addresses, where the end site's IPv4 address is a more specific address block drawn from the upstream provider's address block, and the end site would have an entry in the upstream provider's reverse DNS zone file, or it would have authoritative local name servers that are delegated from the upstream provider's DNS zone. In the case of the 6to4 mapped IPv6 space, the upstream may not be providing any IPv6-based services at all, and therefore would not be expected to have a 6to4 reverse DNS delegation for its IPv4 address block. The general observation is that 6to4 IPv6 reverse DNS delegations cannot necessarily always precisely match the corresponding IPv4 reverse DNS delegations.
ToP   noToC   RFC5158 - Page 4
   Sub-delegations of IPv4 provider address space are not consistently
   recorded, and any 6to4 reverse zone operator would be required to
   undertake reverse zone delegations in the absence of reliable current
   address assignment information, undertaking a "hop over" of the
   upstream provider's address block.  Similarly, a delegated entity may
   need to support the same "hop over" when undertaking further
   delegations in their reverse zone.

2.2. Guessing a Non-Delegated 6to4 Reverse Server

One way to avoid such unreliable delegations is to alter server behavior for reverse servers in this zone. Where no explicit delegation information exists in the zone file, the server could look up the domain for the servers for the equivalent IPv4 address root used in the 6to4 address. These servers could then be queried for the IPv6 PTR query. The issues with fielding altered server behaviors for this domain are not to be taken lightly, and the delegation chain for IPv4 will not be the same for 6to4 in any case. An isolated 6to4 site uses a single IPv4 /32 address, and it is improbable that a single address would have explicit delegation. In other words, it is not likely that the delegation for IPv4 would parallel that of 6to4.

2.3. Locating Local Servers at Reserved Addresses

Another approach uses an altered server to resolve non-delegated 6to4 reverse queries. The 6to4 query is decoded to recover the original 6to4 IP address. The site-specific part of the address is rewritten to a constant value, and this value is used as the target of a lookup query. This requires that a 6to4 site should reserve local addresses, and configure reverse servers on these addresses. Again, this is a weak approach in that getting the DNS to query non- delegated addresses is a case of generation of spurious traffic.

2.4. Synthesized Responses

The final approach considered here is to synthesize an answer when no explicit delegation exists. This approach would construct a pseudo host name using the IPv6 query address as the seed. Given that the host name has no valid forward DNS mapping, then this becomes a case of transforming one invalid DNS object into another.
ToP   noToC   RFC5158 - Page 5

2.5. Selecting a Reasonable Approach

It would appear that the most reasonable approach from this set of potential candidates is to support a model of conventional standard delegation. The consequent task is to reduce the administrative overheads in managing the zone, supporting delegation of reverse zone files on a basis of providing a delegation capability directly to each 6to4 site.

3. 6to4 Networks Address Use

A 6to4 client network is an isolated IPv6 network composed as a set of IPv6 hosts and a dual stack (IPv4 and IPv6) local router connected to the local IPv6 network and the external IPv4 network. An example of a 6to4 network is as follows: +-------------+ IPv6-in-IPv4 packets (A)| | IPv6 packets ------------------------| 6to4router |-------------------------- | | | | | | | +-------------+ local IPv6 clients IPv4 network IPv6 network Figure 1 The IPv4 address used as part of the generation of 6to4 addresses for the local IPv6 network is that of the external IPv4 network interface address (labelled '(A)' in the above diagram). For example, if the interface (A) has the IPv4 address, then the local IPv6 clients will use a common IPv6 address prefix of the form 2002: {}::/48 (or (2002:C000:201::/48 in hex notation). All the local IPv6 clients share this common /48 address prefix, irrespective of any local IPv4 address that such host may use if they are operating in a dual stack mode.
ToP   noToC   RFC5158 - Page 6
   An example of a 6to4 network with addressing:

       IPv4 network (A)|             | IPv6 network
    -------------------| 6to4router  |-------------
    |             |    |  |   | interface identifier
                       +-------------+   1A  |   | local IPv6 address
                                             |   |
                                             1B  |

                                 Figure 2

4. Delegation Administration

This specification uses a single delegation level in the zone (the zone is specified in [RFC3596]), delegating zones only at the 48th bit position. This corresponds with individual delegations related to a single /32 IPv4 address, or the equivalent of a single 6to4 local site. The zone files containing the end site delegations are to be operated with a low TTL (configured to be a time value in the scale of hours rather than days or weeks), and updates for delegation requests in the zone are to be made using dynamic DNS updates [RFC2136]. The delegation system is to be self-driven by clients residing within 6to4 networks. The 6to4 reverse DNS delegation function is to be accessible only by clients using 6to4 IPv6 source addresses, and the only delegation that can be managed is that corresponding to the /48 prefix of the IPv6 source address of the client. This service is to operate the delegation management service using web-based server access using Transport Layer Security (TLS) [RFC4346] (accessible via a "https:" URL). This is intended to ensure that the source address-driven delegation selection function cannot be disrupted through proxy caching of the web server's responses, and also to ensure that the delegation service cannot be readily mimicked. The service is to be found at
ToP   noToC   RFC5158 - Page 7
   This service is implemented by web servers that are operated on a
   dual-stack IPv4 / IPv6 server, accessible via SSL.  The web server's
   actions will be determined by the source address of the client.  If
   the client uses a 6to4 source address, the server will present a
   delegation interface for the corresponding 6to4 reverse zone.
   Otherwise, the server will provide a description of the delegation

   When accessed by a 6to4 source address, the interface presented by
   the delegation service is a conventional DNS delegation interface,
   allowing the client to enter the details of a number of DNS servers
   for the corresponding reverse domain.  The targets of the DNS
   delegation are checked by the delegation manager using IPv4 and IPv6,
   according to the addresses of the targets, to ensure that they are
   responding, that they are configured consistently, and are
   authoritative for the delegated domain.  If these conditions are met,
   the delegation details are entered into the zone at the primary
   master.  In order to avoid the server being used as a denial of
   service platform, the server should throttle the number of DNS
   delegation requests made to any single IP address, and also throttle
   the number of redelegation requests for any single 6to4 zone.

   In other cases the system provides diagnostic information to the

   The benefits of this structure include a fully automated mode of
   operation.  The service delivery is on demand and the system only
   permits self-operation of the delegation function.

   The potential issues with this structure include:

   o  Clients inside a 6to4 site could alter the delegation details
      without the knowledge of the site administrator.  It is noted that
      this is intended for small-scale sites.  Where there are potential
      issues of unauthorized access to this delegation function, the
      local site administrator could take appropriate access control

   o  IPv4 DHCP-based 6to4 sites, or any 6to4 site that uses
      dynamically-assigned external IPv4 interface addresses, could
      inherit nonsense reverse entries created by previous users of the
      dynamically assigned address.  In this case, the client site could
      request delegation of the reverse zone as required.  More
      generally, given the potentially for inheritance of 'stale'
      reverse DNS information in this context, in those cases where the
      issues of potential inheritance of 'stale' reverse DNS information
      is a concern, it is recommended that a 6to4 site either use a
      static IPv4 address in preference to a dynamically-assigned
ToP   noToC   RFC5158 - Page 8
      address, or ensure that the reverse delegation information is
      updated using the service mechanism described here upon each
      dynamic address assignment event.

   o  The approach does not scale efficiently, as there is the potential
      that the flat zone file may grow considerably.  However, it is
      noted that 6to4 is intended to be a transition mechanism useful
      for a limited period of time in a limited context of an isolated
      network where other forms of a tunnelled connection is not
      feasible.  It is envisaged that at some point the density of IPv6
      adoption in stub network would provide adequate drivers for
      widespread adoption of native IPv6 services, obviating the need
      for continued scaling of 6to4 support services.  An estimate of
      the upper bound of the size of the 6to4 reverse delegation zone
      would be of the order of millions of entries.  It is also noted
      that the value of a reverse delegation is a questionable
      proposition and many deployment environments have no form of
      reverse delegation.

   o  It is also conceivable that an enterprise network could decide to
      use 6to4 internally in some form of private context, with the
      hosts only visible in internal DNS servers.  In this mechanism the
      reverse delegation, if desired, would need to be implemented in an
      internal private (non-delegated) corresponding zone of the 6to4
      reverse domain space.

   There may be circumstances where an IPv4 address controller wishes to
   "block" the ability for users of these addresses to use this 6to4
   scheme.  Scenarios that would motivate this concern would include
   situations when the IPv4 provider is also offering an IPv6 service,
   and native IPv6 should be deployed instead of 6to4.  In such
   circumstances the 6to4 reverse zone operator should allow for such a
   6to4 reverse delegation blocking function upon application to the
   delegation zone operator.

   For a delegation to be undertaken the following conditions should

   o  The 6to4 site must have configured a minimum of one primary and
      one secondary server for the 6to4 IPv6 reverse address zone.

   o  At the time of the delegation request, the primary and secondary
      servers must be online, reachable, correctly configured, and in a
      mutually consistent state with respect to the 6to4 reverse zone.
      In this context, "mutually consistent" implies the same SOA RR and
      identical NS RRSets.
ToP   noToC   RFC5158 - Page 9
   o  The 6to4 reverse delegation service will only accept delegation
      requests associated with the 6to4 source address of the requesting

   The approach described here, of a fully automated system driven by
   the site administrators of the 6to4 client networks, appears to
   represent an appropriate match of the operational requirements of
   managing reverse DNS domains for 6to4 addresses.

   For maintenance of the reverse delegation zones the service maintains
   an email contact point for each active delegation, derived from the
   zone's SOA contact address (SOA RNAME), or explicitly entered in the
   delegation interface.  This contact point would be informed upon any
   subsequent change of delegation details.

   The 6to4 reverse DNS management system also undertakes a periodic
   sweep of all active delegations, so that each delegation is checked
   every 30 days.  If the delegation fails this integrity check the
   email contact point is informed of the problem, and a further check
   is scheduled for 14 days later.  If this second check fails, the
   delegation is automatically removed, and a further notice is issued
   to the contact point.

5. Security Considerations

This system offers a rudimentary level of assurance in attempting to ensure that delegation requests from a 6to4 site can only direct the delegation of the corresponding 6to4 reverse DNS domain and no other. Address-based authentication is not a very robust method from a security perspective, as addresses can be readily spoofed. Accordingly, reverse delegation information does not provide reliable information in either validating a domain name or in validating an IP address, and no conclusions should be drawn from the presence or otherwise of a reverse DNS mapping for any IP address. The service management interface allows a 6to4 client to insert any server name as a DNS server, potentially directing the delegation test system to make a DNS query to any nominated system. The server throttles the number of requests made to any single IP address to mitigate the attendant risk of a high volume of bogus DNS queries being generated by the server. For similar reasons, the server also throttles the number of redelegation requests for any single 6to4 zone. For a general threat analysis of 6to4, especially the additional risk of address spoofing in 2002::/16, see [RFC3964].
ToP   noToC   RFC5158 - Page 10
   Section 4 notes that the local site administrator could take
   appropriate access control measures to prevent clients inside a 6to4
   site performing unauthorized changes to the delegation details.  This
   may be in the form of a firewall configuration, regarding control of
   access to the service from the interior of a 6to4 site, or a similar
   mechanism that enforces local access policies.

6. IANA Considerations

The IANA has delegated the domain according to delegation instructions provided by the Internet Architecture Board.

7. Acknowledgements

The author acknowledges the prior work of Keith Moore in preparing a document that enumerated a number of possible approaches to undertake the delegation and discovery of reverse zones. The author acknowledges the assistance of George Michaelson and Andrei Robachevsky in preparing this document, and Peter Koch, Pekka Savola, Jun-ichiro Itojun Hagino, and Catherine Meadows for their helpful review comments.

8. References

8.1. Normative References

[RFC2136] Vixie, P., Thomson, S., Rekhter, Y., and J. Bound, "Dynamic Updates in the Domain Name System (DNS UPDATE)", RFC 2136, April 1997. [RFC3056] Carpenter, B. and K. Moore, "Connection of IPv6 Domains via IPv4 Clouds", RFC 3056, February 2001. [RFC3596] Thomson, S., Huitema, C., Ksinant, V., and M. Souissi, "DNS Extensions to Support IP Version 6", RFC 3596, October 2003. [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.1", RFC 4346, April 2006.

8.2. Informative References

[6to4-dns] Moore, K., "6to4 and DNS", Work in Progress, April 2003. [RFC3964] Savola, P. and C. Patel, "Security Considerations for 6to4", RFC 3964, December 2004.
ToP   noToC   RFC5158 - Page 11

Author's Address

Geoff Huston APNIC EMail: URI:
ToP   noToC   RFC5158 - Page 12
Full Copyright Statement

   Copyright (C) The IETF Trust (2008).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at