Tech-invite3GPPspaceIETF RFCsSIP
9190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 3293

General Switch Management Protocol (GSMP) Packet Encapsulations for Asynchronous Transfer Mode (ATM), Ethernet and Transmission Control Protocol (TCP)

Pages: 9
Proposed Standard

ToP   noToC   RFC3293 - Page 1
Network Working Group                                           A. Doria
Request for Comments: 3293                Lulea University of Technology
Category: Standards Track                                     J. Buerkle
                                                         Nortel Networks
                                                              T. Worster
                                                               June 2002


               General Switch Management Protocol (GSMP)
      Packet Encapsulations for Asynchronous Transfer Mode (ATM),
            Ethernet and Transmission Control Protocol (TCP)

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2002).  All Rights Reserved.

Abstract

This memo specifies the encapsulation of GSMP (General Switch Management Protocol) packets in ATM (Asynchronous Transfer Mode), Ethernet and TCP (Transmission Control Protocol). Specification of Requirements The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [7].

1. Introduction

GSMP messages are defined in [1] and MAY be encapsulated in several different protocols for transport. This memo specifies their encapsulation in ATM AAL-5, in Ethernet or in TCP. Other encapsulations may be defined in future specifications.
ToP   noToC   RFC3293 - Page 2

2. ATM Encapsulation

GSMP packets are variable length and for an ATM data link layer they are encapsulated directly in an AAL-5 CPCS-PDU [3][4] with an LLC/SNAP header as illustrated: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LLC (0xAA-AA-03) | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | SNAP (0x00-00-00-88-0C) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | ~ GSMP Message ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Pad (0 - 47 bytes) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + AAL-5 CPCS-PDU Trailer (8 bytes) + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ (The convention in the documentation of Internet Protocols [5] is to express numbers in decimal. Numbers in hexadecimal format are specified by prefacing them with the characters "0x". Numbers in binary format are specified by prefacing them with the characters "0b". Data is pictured in "big-endian" order. That is, fields are described left to right, with the most significant byte on the left and the least significant byte on the right. Whenever a diagram shows a group of bytes, the order of transmission of those bytes is the normal order in which they are read in English. Whenever a byte represents a numeric quantity the left most bit in the diagram is the high order or most significant bit. That is, the bit labelled 0 is the most significant bit. Similarly, whenever a multi-byte field represents a numeric quantity the left most bit of the whole field is the most significant bit. When a multi-byte quantity is transmitted, the most significant byte is transmitted first. This is the same coding convention as is used in the ATM layer [2] and AAL-5 [3][4].) The LLC/SNAP header contains the bytes: 0xAA 0xAA 0x03 0x00 0x00 0x00 0x88 0x0C. (0x880C is the assigned Ethertype for GSMP.) The maximum transmission unit (MTU) of the GSMP Message field is 1492 bytes.
ToP   noToC   RFC3293 - Page 3
   The virtual channel over which a GSMP session is established between
   a controller and the switch it is controlling is called the GSMP
   control channel.  The default VPI and VCI of the GSMP control channel
   for LLC/SNAP encapsulated GSMP messages on an ATM data link layer is:

      VPI = 0
      VCI = 15.

   The GSMP control channel MAY be changed using the GSMP MIB.

3. Ethernet Encapsulation

GSMP packets MAY be encapsulated on an Ethernet data link as illustrated: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Destination Address | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Source Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Ethertype (0x88-0C) | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | ~ GSMP Message ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sender Instance | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Receiver Instance | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Pad | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Frame Check Sequence | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Destination Address For the SYN message of the adjacency protocol the Destination Address is the broadcast address 0xFFFFFFFFFFFF. (Alternatively, it is also valid to configure the node with the unicast 48-bit IEEE MAC address of the destination. In this case the configured unicast Destination Address is used in the SYN message.) For all other messages the Destination Address is the unicast 48-bit
ToP   noToC   RFC3293 - Page 4
      IEEE.  MAC address of the destination.  This address may be
      discovered from the Source Address field of messages received
      during synchronisation of the adjacency protocol.

   Source Address
      For all messages, the Source Address is the 48-bit IEEE MAC
      address of the sender.

   Ethertype
      The assigned Ethertype for GSMP is 0x880C.

   GSMP Message
      The maximum transmission unit (MTU) of the GSMP Message field is
      1492 bytes.

   Sender Instance
      The Sender Instance number for the link obtained from the
      adjacency protocol.  This field is already present in the
      adjacency protocol message.  It is appended to all non-adjacency
      GSMP messages in the Ethernet encapsulation to offer additional
      protection against the introduction of corrupt state.

   Receiver Instance
      The Receiver Instance number is what the sender believes is the
      current instance number for the link, allocated by the entity at
      the far end of the link.  This field is already present in the
      adjacency protocol message.  It is appended to all non-adjacency
      GSMP messages in the Ethernet encapsulation to offer additional
      protection against the introduction of corrupt state.

   Pad
      After adjacency has been established the minimum length of the
      data field of an Ethernet packet is 46 bytes.  If necessary,
      padding should be added such that it meets the minimum Ethernet
      frame size.  This padding should be bytes of zero and is not to be
      considered part of the GSMP message.

   Frame Check Sequence
      The Frame Check Sequence (FCS) is defined in IEEE 802.3 [6] as
      follows:

         Note: This section is included for informational and historical
         purposes only.  The normative reference can be found in IEEE
         802.3 Standard [6].

          "A cyclic redundancy check (CRC) is used by the transmit and
         receive algorithms to generate a CRC value for the FCS field.
         The frame check sequence (FCS) field contains a 4-byte (32-bit)
ToP   noToC   RFC3293 - Page 5
         cyclic redundancy check (CRC) value.  This value is computed as
         a function of the contents of the source address, destination
         address, length, LLC data and pad (that is, all fields except
         the preamble, SFD, FCS and extension).  The encoding is defined
         by the following generating polynomial.

         G(x)=x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^
         7+x^5+x^4+x^2+x^1."

         The procedure for the CRC calculation can be found in [6].

   After the adjacency protocol has achieved synchronisation, for every
   GSMP message received with an Ethernet encapsulation, the receiver
   must check the Source Address from the Ethernet MAC header, the
   Sender Instance, and the Receiver Instance.  The incoming GSMP
   message must be discarded if the Sender Instance and the Source
   Address do not match the values of the Sender Instance and the Sender
   Name stored by the "Update Peer Verifier" operation of the GSMP
   adjacency protocol.  The incoming GSMP message must also be discarded
   if it arrives over any port other than the port over which the
   adjacency protocol has achieved synchronisation.  In addition, the
   incoming message must also be discarded if the Receiver Instance
   field does not match the current value for the Sender Instance of the
   GSMP adjacency protocol.

4. TCP/IP Encapsulation

When GSMP messages are transported over an IP network, they MUST be transported using the TCP encapsulation. TCP provides reliable transport, network flow control, and end-system flow control suitable for networks that may have high loss and variable or unpredictable delay. For TCP encapsulations of GSMP messages, the controller runs the client code and the switch runs the server code. Upon initialisation, the server is listening on GSMP's TCP port number: 6068. The controller establishes a TCP connection with each switch it manages. The switch under control MUST be a multi-connection server (PORT 6068) to allow creation of multiple control sessions from N GSMP controller instances. Adjacency protocol messages, which are used to synchronise the controller and switch and maintain handshakes, are sent by the controller to the switch after the TCP connection is established. GSMP messages other than adjacency protocol messages MUST NOT be sent until after the adjacency protocol has achieved synchronisation. The actual GSMP message flow will occur on other ports.
ToP   noToC   RFC3293 - Page 6

4.1 Message Formats

GSMP messages are sent over a TCP connection. A GSMP message is processed only after it is entirely received. A four-byte TLV header field is prepended to the GSMP message to provide delineation of GSMP messages within the TCP stream. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type (0x88-0C) | Length | |-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | ~ GSMP Message ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Type This 2-byte field indicates the type code of the following message. The type code for GSMP messages is 0x88-0C (i.e., the same as GSMP's Ethertype). Length This 2-byte unsigned integer indicates the total length of the GSMP message only. It does not include the 4-byte TLV header.

4.2 TCP/IP Security consideration

When GSMPv3 is implemented for use in IP networks, provisions for security between the controller and client MUST be available and MUST be provided by IP Security [IPSEC]. In this case, the IPSEC Encapsulation Security Payload (ESP) MUST be used to provide both integrity and confidentiality.

5. Security Considerations

The security of GSMP's TCP/IP control channel has been addressed in Section 4.2. For all uses of GSMP over an IP network it is REQUIRED that GSMP be run over TCP/IP using the security considerations discussed in Section 4.2. Security using ATM and Ethernet encapsulations MAY be provided at the link layer. Discussion of these methods is beyond the scope of this specification. For secure operation over any media, the IP encapsulation with IPsec SHOULD be used.
ToP   noToC   RFC3293 - Page 7

References

[1] Doria, A., Sundell, K., Hellstrand, F. and T. Worster, "General Switch Management Protocol (GSMP) V3", RFC 3292, June 2002. [2] "B-ISDN ATM Layer Specification," International Telecommunication Union, ITU-T Recommendation I.361, Feb. 1999. [3] "B-ISDN ATM Adaptation Layer (AAL) Specification," International Telecommunication Union, ITU-T Recommendation I.363, Mar. 1993. [4] "B-ISDN ATM Adaptation Layer specification: Type 5 AAL", International Telecommunication Union, ITU-T Recommendation I.363.5, Aug. 1996. [5] Reynolds, J., Editor, "Assigned Numbers", RFC 3232, January 2002. [6] IEEE Std 802.3, 1998 Edition "Information technology-Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications" [7] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
ToP   noToC   RFC3293 - Page 8

Authors' Addresses

Tom Worster Phone: +1 617 247 2624 EMail: fsb@thefsb.org Avri Doria Div. of Computer Communications Lulea University of Technology S-971 87 Lulea Sweden Phone: +1 401 663 5024 EMail: avri@acm.com Joachim Buerkle Nortel Networks Germany GmbH & Co. KG Hahnstr. 37-39 60528 Frankfurt am Main Germany EMail: Joachim.Buerkle@nortelnetworks.com
ToP   noToC   RFC3293 - Page 9
Full Copyright Statement

   Copyright (C) The Internet Society (2002).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.