Tech-invite3GPPspaceIETFspace
959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 8294

Common YANG Data Types for the Routing Area

Pages: 43
Proposed Standard
Errata
Part 1 of 2 – Pages 1 to 26
None   None   Next

Top   ToC   RFC8294 - Page 1
Internet Engineering Task Force (IETF)                            X. Liu
Request for Comments: 8294                                         Jabil
Category: Standards Track                                          Y. Qu
ISSN: 2070-1721                             Futurewei Technologies, Inc.
                                                               A. Lindem
                                                           Cisco Systems
                                                                C. Hopps
                                                        Deutsche Telekom
                                                               L. Berger
                                                 LabN Consulting, L.L.C.
                                                           December 2017


              Common YANG Data Types for the Routing Area

Abstract

This document defines a collection of common data types using the YANG data modeling language. These derived common types are designed to be imported by other modules defined in the routing area. Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8294.
Top   ToC   RFC8294 - Page 2
Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

1. Introduction ....................................................3 1.1. Terminology ................................................3 2. Overview ........................................................3 3. IETF Routing Types YANG Module ..................................8 4. IANA Routing Types YANG Module .................................27 5. IANA Considerations ............................................37 5.1. IANA-Maintained iana-routing-types Module .................38 6. Security Considerations ........................................39 7. References .....................................................39 7.1. Normative References ......................................39 7.2. Informative References ....................................40 Acknowledgements ..................................................42 Authors' Addresses ................................................43
Top   ToC   RFC8294 - Page 3

1. Introduction

YANG [RFC6020] [RFC7950] is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols. The YANG language supports a small set of built-in data types and provides mechanisms to derive other types from the built-in types. This document introduces a collection of common data types derived from the built-in YANG data types. The derived types are designed to be the common types applicable for modeling in the routing area.

1.1. Terminology

The terminology for describing YANG data models is found in [RFC7950].

2. Overview

This document defines two YANG modules for common routing types: ietf-routing-types and iana-routing-types. The only module imports (ietf-yang-types and ietf-inet-types; see Section 3) are from [RFC6991]. The ietf-routing-types module contains common routing types other than those corresponding directly to IANA mappings. These include the following: router-id Router Identifiers are commonly used to identify nodes in routing and other control-plane protocols. An example usage of router-id can be found in [OSPF-YANG]. route-target Route Targets (RTs) are commonly used to control the distribution of Virtual Routing and Forwarding (VRF) information (see [RFC4364]) in support of BGP/MPLS IP Virtual Private Networks (VPNs) and BGP/MPLS Ethernet VPNs [RFC7432]. An example usage can be found in [L2VPN-YANG]. ipv6-route-target IPv6 Route Targets are similar to standard Route Targets, except that they are IPv6 Address Specific BGP Extended Communities as described in [RFC5701]. An IPv6 Route Target is 20 octets and includes an IPv6 address as the global administrator. route-target-type This type defines the import and export rules of Route Targets, as described in Section 4.3.1 of [RFC4364].
Top   ToC   RFC8294 - Page 4
   route-distinguisher
      Route Distinguishers (RDs) are commonly used to identify separate
      routes in support of VPNs.  For example, as described in
      [RFC4364], RDs are commonly used to identify independent VPNs and
      VRFs, and, more generally, to identify multiple routes to the same
      prefix.

   route-origin
      A Route Origin is commonly used to indicate the Site of Origin for
      VRF information (see [RFC4364]) in support of BGP/MPLS IP VPNs and
      BGP/MPLS Ethernet VPNs [RFC7432].

   ipv6-route-origin
      An IPv6 Route Origin would also be used to indicate the Site of
      Origin for VRF information (see [RFC4364]) in support of VPNs.
      IPv6 Route Origins are IPv6 Address Specific BGP Extended
      Communities as described in [RFC5701].  An IPv6 Route Origin is
      20 octets and includes an IPv6 address as the global
      administrator.

   ipv4-multicast-group-address
      This type defines the representation of an IPv4 multicast group
      address, which is in the range of 224.0.0.0 to 239.255.255.255.
      An example usage can be found in [PIM-YANG].

   ipv6-multicast-group-address
      This type defines the representation of an IPv6 multicast group
      address, which is in the range of ff00::/8.  An example usage can
      be found in [PIM-YANG].

   ip-multicast-group-address
      This type represents an IP multicast group address and is IP
      version neutral.  The format of the textual representation implies
      the IP version.  An example usage can be found in [PIM-YANG].

   ipv4-multicast-source-address
      This represents the IPv4 source address type for use in multicast
      control protocols.  This type also allows the indication of
      wildcard sources, i.e., "*".  An example of where this type
      may/will be used is [PIM-YANG].

   ipv6-multicast-source-address
      This represents the IPv6 source address type for use in multicast
      control protocols.  This type also allows the indication of
      wildcard sources, i.e., "*".  An example of where this type
      may/will be used is [PIM-YANG].
Top   ToC   RFC8294 - Page 5
   bandwidth-ieee-float32
      This represents the bandwidth in IEEE 754 floating-point 32-bit
      binary format [IEEE754].  It is commonly used in Traffic
      Engineering control-plane protocols.  An example of where this
      type may/will be used is [OSPF-YANG].

   link-access-type
      This type identifies the IGP link type.

   timer-multiplier
      This type is used in conjunction with a timer-value type.  It is
      generally used to indicate the number of timer-value intervals
      that may expire before a specific event must occur.  Examples of
      this include the arrival of any Bidirectional Forwarding Detection
      (BFD) packets (see [RFC5880] Section 6.8.4) or hello_interval
      [RFC3209].

   timer-value-seconds16
      This type covers timers that can be set in seconds, not set, or
      set to infinity.  This type supports a range of values that can be
      represented in a uint16 (2 octets).

   timer-value-seconds32
      This type covers timers that can be set in seconds, not set, or
      set to infinity.  This type supports a range of values that can be
      represented in a uint32 (4 octets).

   timer-value-milliseconds
      This type covers timers that can be set in milliseconds, not set,
      or set to infinity.  This type supports a range of values that can
      be represented in a uint32 (4 octets).

   percentage
      This type defines a percentage with a range of 0-100%.  An example
      usage can be found in [BGP-Model].

   timeticks64
      This type is based on the timeticks type defined in [RFC6991] but
      with 64-bit precision.  It represents the time in hundredths of a
      second between two epochs.  An example usage can be found in
      [BGP-Model].

   uint24
      This type defines a 24-bit unsigned integer.  An example usage can
      be found in [OSPF-YANG].
Top   ToC   RFC8294 - Page 6
   generalized-label
      This type represents a Generalized Label for Generalized
      Multiprotocol Label Switching (GMPLS) [RFC3471].  The Generalized
      Label does not identify its type, which is known from context.  An
      example usage can be found in [TE-YANG].

   mpls-label-special-purpose
      This type represents the special-purpose MPLS label values
      [RFC7274].

   mpls-label-general-use
      The 20-bit label value in an MPLS label stack is specified in
      [RFC3032].  This label value does not include the encodings of
      Traffic Class and TTL (Time to Live).  The label range specified
      by this type is for general use, with special-purpose MPLS label
      values excluded.

   mpls-label
      The 20-bit label value in an MPLS label stack is specified in
      [RFC3032].  This label value does not include the encodings of
      Traffic Class and TTL.  The label range specified by this type
      covers the general-use values and the special-purpose label
      values.  An example usage can be found in [MPLS-Base-YANG].

   This document defines the following YANG groupings:

   mpls-label-stack
      This grouping defines a reusable collection of schema nodes
      representing an MPLS label stack [RFC3032].

   vpn-route-targets
      This grouping defines a reusable collection of schema nodes
      representing Route Target import-export rules used in BGP-enabled
      VPNs [RFC4364] [RFC4664].  An example usage can be found in
      [L2VPN-YANG].
Top   ToC   RFC8294 - Page 7
   The iana-routing-types module contains common routing types
   corresponding directly to IANA mappings.  These include the
   following:

   address-family
      This type defines values for use in Address Family identifiers.
      The values are based on the IANA "Address Family Numbers" registry
      [IANA-ADDRESS-FAMILY-REGISTRY].  An example usage can be found in
      [BGP-Model].

   subsequent-address-family
      This type defines values for use in Subsequent Address Family
      Identifiers (SAFIs).  The values are based on the IANA "Subsequent
      Address Family Identifiers (SAFI) Parameters" registry
      [IANA-SAFI-REGISTRY].
Top   ToC   RFC8294 - Page 8

3. IETF Routing Types YANG Module

<CODE BEGINS> file "ietf-routing-types@2017-12-04.yang" module ietf-routing-types { namespace "urn:ietf:params:xml:ns:yang:ietf-routing-types"; prefix rt-types; import ietf-yang-types { prefix yang; } import ietf-inet-types { prefix inet; } organization "IETF RTGWG - Routing Area Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/rtgwg/> WG List: <mailto:rtgwg@ietf.org> Editors: Xufeng Liu <mailto:Xufeng_Liu@jabail.com> Yingzhen Qu <mailto:yingzhen.qu@huawei.com> Acee Lindem <mailto:acee@cisco.com> Christian Hopps <mailto:chopps@chopps.org> Lou Berger <mailto:lberger@labn.com>"; description "This module contains a collection of YANG data types considered generally useful for routing protocols. Copyright (c) 2017 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module is part of RFC 8294; see the RFC itself for full legal notices.";
Top   ToC   RFC8294 - Page 9
      revision 2017-12-04 {
        description "Initial revision.";
        reference
          "RFC 8294: Common YANG Data Types for the Routing Area.
           Section 3.";
     }

     /*** Identities related to MPLS/GMPLS ***/

     identity mpls-label-special-purpose-value {
       description
         "Base identity for deriving identities describing
          special-purpose Multiprotocol Label Switching (MPLS) label
          values.";
       reference
         "RFC 7274: Allocating and Retiring Special-Purpose MPLS
          Labels.";
     }

     identity ipv4-explicit-null-label {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the IPv4 Explicit NULL Label.";
       reference
         "RFC 3032: MPLS Label Stack Encoding.  Section 2.1.";
     }

     identity router-alert-label {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the Router Alert Label.";
       reference
         "RFC 3032: MPLS Label Stack Encoding.  Section 2.1.";
     }

     identity ipv6-explicit-null-label {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the IPv6 Explicit NULL Label.";
       reference
         "RFC 3032: MPLS Label Stack Encoding.  Section 2.1.";
     }
Top   ToC   RFC8294 - Page 10
     identity implicit-null-label {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the Implicit NULL Label.";
       reference
         "RFC 3032: MPLS Label Stack Encoding.  Section 2.1.";
     }

     identity entropy-label-indicator {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the Entropy Label Indicator.";
       reference
         "RFC 6790: The Use of Entropy Labels in MPLS Forwarding.
          Sections 3 and 10.1.";
     }

     identity gal-label {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the Generic Associated Channel
          (G-ACh) Label (GAL).";
       reference
         "RFC 5586: MPLS Generic Associated Channel.
          Sections 4 and 10.";
     }

     identity oam-alert-label {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the OAM Alert Label.";
       reference
         "RFC 3429: Assignment of the 'OAM Alert Label' for
          Multiprotocol Label Switching Architecture (MPLS)
          Operation and Maintenance (OAM) Functions.
          Sections 3 and 6.";
     }

     identity extension-label {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the Extension Label.";
       reference
         "RFC 7274: Allocating and Retiring Special-Purpose MPLS
          Labels.  Sections 3.1 and 5.";
     }
Top   ToC   RFC8294 - Page 11
     /*** Collection of types related to routing ***/

     typedef router-id {
       type yang:dotted-quad;
       description
         "A 32-bit number in the dotted-quad format assigned to each
          router.  This number uniquely identifies the router within
          an Autonomous System.";
     }

     /*** Collection of types related to VPNs ***/

     typedef route-target {
       type string {
         pattern
           '(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
         +     '6[0-4][0-9]{3}|'
         +     '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|'
         +     '42949672[0-8][0-9]|'
         +     '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|'
         +     '42949[0-5][0-9]{4}|'
         +     '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|'
         +     '42[0-8][0-9]{7}|4[01][0-9]{8}|'
         +     '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|'
         + '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|'
         +     '25[0-5])\.){3}([0-9]|[1-9][0-9]|'
         +     '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|'
         +     '655[0-2][0-9]|'
         +     '65[0-4][0-9]{2}|6[0-4][0-9]{3}|'
         +     '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
         + '(2:(429496729[0-5]|42949672[0-8][0-9]|'
         +     '4294967[01][0-9]{2}|'
         +     '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|'
         +     '4294[0-8][0-9]{5}|'
         +     '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|'
         +     '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):'
         +     '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
         +     '6[0-4][0-9]{3}|'
         +     '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
         + '(6(:[a-fA-F0-9]{2}){6})|'
         + '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):'
         +     '[0-9a-fA-F]{1,12})';
       }
Top   ToC   RFC8294 - Page 12
       description
         "A Route Target is an 8-octet BGP extended community
          initially identifying a set of sites in a BGP VPN
          (RFC 4364).  However, it has since taken on a more general
          role in BGP route filtering.  A Route Target consists of two
          or three fields: a 2-octet Type field, an administrator
          field, and, optionally, an assigned number field.

          According to the data formats for types 0, 1, 2, and 6 as
          defined in RFC 4360, RFC 5668, and RFC 7432, the encoding
          pattern is defined as:

          0:2-octet-asn:4-octet-number
          1:4-octet-ipv4addr:2-octet-number
          2:4-octet-asn:2-octet-number
          6:6-octet-mac-address

          Additionally, a generic pattern is defined for future
          Route Target types:

          2-octet-other-hex-number:6-octet-hex-number

          Some valid examples are 0:100:100, 1:1.1.1.1:100,
          2:1234567890:203, and 6:26:00:08:92:78:00.";
       reference
         "RFC 4360: BGP Extended Communities Attribute.
          RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs).
          RFC 5668: 4-Octet AS Specific BGP Extended Community.
          RFC 7432: BGP MPLS-Based Ethernet VPN.";
     }
Top   ToC   RFC8294 - Page 13
     typedef ipv6-route-target {
       type string {
         pattern
             '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
             + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
             + '(((25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])\.){3}'
             + '(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])))'
             + ':'
             + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
             + '6[0-4][0-9]{3}|'
             + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)';
         pattern '((([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
             + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))'
             + ':'
             + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
             + '6[0-4][0-9]{3}|'
             + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)';
       }
       description
         "An IPv6 Route Target is a 20-octet BGP IPv6 Address
          Specific Extended Community serving the same function
          as a standard 8-octet Route Target, except that it only
          allows an IPv6 address as the global administrator.
          The format is <ipv6-address:2-octet-number>.

          Two valid examples are 2001:db8::1:6544 and
          2001:db8::5eb1:791:6b37:17958.";
       reference
         "RFC 5701: IPv6 Address Specific BGP Extended Community
          Attribute.";
     }

     typedef route-target-type {
       type enumeration {
         enum import {
           value 0;
           description
             "The Route Target applies to route import.";
         }
         enum export {
           value 1;
           description
             "The Route Target applies to route export.";
         }
Top   ToC   RFC8294 - Page 14
         enum both {
           value 2;
           description
             "The Route Target applies to both route import and
              route export.";
         }
       }
       description
         "Indicates the role a Route Target takes in route filtering.";
       reference
         "RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs).";
     }

     typedef route-distinguisher {
       type string {
         pattern
           '(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
         +     '6[0-4][0-9]{3}|'
         +     '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|'
         +     '42949672[0-8][0-9]|'
         +     '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|'
         +     '42949[0-5][0-9]{4}|'
         +     '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|'
         +     '42[0-8][0-9]{7}|4[01][0-9]{8}|'
         +     '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|'
         + '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|'
         +     '25[0-5])\.){3}([0-9]|[1-9][0-9]|'
         +     '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|'
         +     '655[0-2][0-9]|'
         +     '65[0-4][0-9]{2}|6[0-4][0-9]{3}|'
         +     '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
         + '(2:(429496729[0-5]|42949672[0-8][0-9]|'
         +     '4294967[01][0-9]{2}|'
         +     '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|'
         +     '4294[0-8][0-9]{5}|'
         +     '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|'
         +     '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):'
         +     '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
         +     '6[0-4][0-9]{3}|'
         +     '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
         + '(6(:[a-fA-F0-9]{2}){6})|'
         + '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):'
         +     '[0-9a-fA-F]{1,12})';
       }
Top   ToC   RFC8294 - Page 15
       description
         "A Route Distinguisher is an 8-octet value used to
          distinguish routes from different BGP VPNs (RFC 4364).
          A Route Distinguisher will have the same format as a
          Route Target as per RFC 4360 and will consist of
          two or three fields: a 2-octet Type field, an administrator
          field, and, optionally, an assigned number field.

          According to the data formats for types 0, 1, 2, and 6 as
          defined in RFC 4360, RFC 5668, and RFC 7432, the encoding
          pattern is defined as:

          0:2-octet-asn:4-octet-number
          1:4-octet-ipv4addr:2-octet-number
          2:4-octet-asn:2-octet-number
          6:6-octet-mac-address

          Additionally, a generic pattern is defined for future
          route discriminator types:

          2-octet-other-hex-number:6-octet-hex-number

          Some valid examples are 0:100:100, 1:1.1.1.1:100,
          2:1234567890:203, and 6:26:00:08:92:78:00.";
       reference
         "RFC 4360: BGP Extended Communities Attribute.
          RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs).
          RFC 5668: 4-Octet AS Specific BGP Extended Community.
          RFC 7432: BGP MPLS-Based Ethernet VPN.";
     }
Top   ToC   RFC8294 - Page 16
     typedef route-origin {
       type string {
         pattern
           '(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
         +     '6[0-4][0-9]{3}|'
         +     '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|'
         +     '42949672[0-8][0-9]|'
         +     '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|'
         +     '42949[0-5][0-9]{4}|'
         +     '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|'
         +     '42[0-8][0-9]{7}|4[01][0-9]{8}|'
         +     '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|'
         + '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|'
         +     '25[0-5])\.){3}([0-9]|[1-9][0-9]|'
         +     '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|'
         +     '655[0-2][0-9]|'
         +     '65[0-4][0-9]{2}|6[0-4][0-9]{3}|'
         +     '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
         + '(2:(429496729[0-5]|42949672[0-8][0-9]|'
         +     '4294967[01][0-9]{2}|'
         +     '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|'
         +     '4294[0-8][0-9]{5}|'
         +     '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|'
         +     '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):'
         +     '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
         +     '6[0-4][0-9]{3}|'
         +     '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
         + '(6(:[a-fA-F0-9]{2}){6})|'
         + '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):'
         +    '[0-9a-fA-F]{1,12})';
       }
       description
         "A Route Origin is an 8-octet BGP extended community
          identifying the set of sites where the BGP route
          originated (RFC 4364).  A Route Origin will have the same
          format as a Route Target as per RFC 4360 and will consist
          of two or three fields: a 2-octet Type field, an
          administrator field, and, optionally, an assigned number
          field.

          According to the data formats for types 0, 1, 2, and 6 as
          defined in RFC 4360, RFC 5668, and RFC 7432, the encoding
          pattern is defined as:

          0:2-octet-asn:4-octet-number
          1:4-octet-ipv4addr:2-octet-number
          2:4-octet-asn:2-octet-number
          6:6-octet-mac-address
Top   ToC   RFC8294 - Page 17
          Additionally, a generic pattern is defined for future
          Route Origin types:

          2-octet-other-hex-number:6-octet-hex-number

          Some valid examples are 0:100:100, 1:1.1.1.1:100,
          2:1234567890:203, and 6:26:00:08:92:78:00.";
       reference
         "RFC 4360: BGP Extended Communities Attribute.
          RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs).
          RFC 5668: 4-Octet AS Specific BGP Extended Community.
          RFC 7432: BGP MPLS-Based Ethernet VPN.";
     }

     typedef ipv6-route-origin {
       type string {
         pattern
             '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
             + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
             + '(((25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])\.){3}'
             + '(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])))'
             + ':'
             + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
             + '6[0-4][0-9]{3}|'
             + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)';
         pattern '((([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
             + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))'
             + ':'
             + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
             + '6[0-4][0-9]{3}|'
             + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)';
       }
       description
         "An IPv6 Route Origin is a 20-octet BGP IPv6 Address
          Specific Extended Community serving the same function
          as a standard 8-octet route, except that it only allows
          an IPv6 address as the global administrator.  The format
          is <ipv6-address:2-octet-number>.

          Two valid examples are 2001:db8::1:6544 and
          2001:db8::5eb1:791:6b37:17958.";
       reference
         "RFC 5701: IPv6 Address Specific BGP Extended Community
          Attribute.";
     }
Top   ToC   RFC8294 - Page 18
     /*** Collection of types common to multicast ***/

     typedef ipv4-multicast-group-address {
       type inet:ipv4-address {
         pattern '(2((2[4-9])|(3[0-9]))\.).*';
       }
       description
         "This type represents an IPv4 multicast group address,
          which is in the range of 224.0.0.0 to 239.255.255.255.";
       reference
         "RFC 1112: Host Extensions for IP Multicasting.";
     }

     typedef ipv6-multicast-group-address {
       type inet:ipv6-address {
         pattern '(([fF]{2}[0-9a-fA-F]{2}):).*';
       }
       description
         "This type represents an IPv6 multicast group address,
          which is in the range of ff00::/8.";
       reference
         "RFC 4291: IP Version 6 Addressing Architecture.  Section 2.7.
          RFC 7346: IPv6 Multicast Address Scopes.";
     }

     typedef ip-multicast-group-address {
       type union {
         type ipv4-multicast-group-address;
         type ipv6-multicast-group-address;
       }
       description
         "This type represents a version-neutral IP multicast group
          address.  The format of the textual representation implies
          the IP version.";
     }
Top   ToC   RFC8294 - Page 19
     typedef ipv4-multicast-source-address {
       type union {
         type enumeration {
           enum * {
             description
               "Any source address.";
           }
         }
         type inet:ipv4-address;
       }
       description
         "Multicast source IPv4 address type.";
     }

     typedef ipv6-multicast-source-address {
       type union {
         type enumeration {
           enum * {
             description
               "Any source address.";
           }
         }
         type inet:ipv6-address;
       }
       description
         "Multicast source IPv6 address type.";
     }

     /*** Collection of types common to protocols ***/

     typedef bandwidth-ieee-float32 {
       type string {
         pattern
           '0[xX](0((\.0?)?[pP](\+)?0?|(\.0?))|'
         + '1(\.([0-9a-fA-F]{0,5}[02468aAcCeE]?)?)?[pP](\+)?(12[0-7]|'
         + '1[01][0-9]|0?[0-9]?[0-9])?)';
       }
       description
         "Bandwidth in IEEE 754 floating-point 32-bit binary format:
          (-1)**(S) * 2**(Exponent-127) * (1 + Fraction),
          where Exponent uses 8 bits and Fraction uses 23 bits.
          The units are octets per second.
          The encoding format is the external hexadecimal-significant
          character sequences specified in IEEE 754 and ISO/IEC C99.
          The format is restricted to be normalized, non-negative, and
          non-fraction: 0x1.hhhhhhp{+}d, 0X1.HHHHHHP{+}D, or 0x0p0,
          where 'h' and 'H' are hexadecimal digits and 'd' and 'D' are
          integers in the range of [0..127].
Top   ToC   RFC8294 - Page 20
          When six hexadecimal digits are used for 'hhhhhh' or
          'HHHHHH', the least significant digit must be an even
          number.  'x' and 'X' indicate hexadecimal; 'p' and 'P'
          indicate a power of two.  Some examples are 0x0p0, 0x1p10,
          and 0x1.abcde2p+20.";
       reference
         "IEEE Std 754-2008: IEEE Standard for Floating-Point
          Arithmetic.
          ISO/IEC C99: Information technology - Programming
          Languages - C.";
     }

     typedef link-access-type {
       type enumeration {
         enum broadcast {
           description
             "Specify broadcast multi-access network.";
         }
         enum non-broadcast-multiaccess {
           description
             "Specify Non-Broadcast Multi-Access (NBMA) network.";
         }
         enum point-to-multipoint {
           description
             "Specify point-to-multipoint network.";
         }
         enum point-to-point {
           description
             "Specify point-to-point network.";
         }
       }
       description
         "Link access type.";
     }

     typedef timer-multiplier {
       type uint8;
       description
         "The number of timer value intervals that should be
          interpreted as a failure.";
     }
Top   ToC   RFC8294 - Page 21
     typedef timer-value-seconds16 {
       type union {
         type uint16 {
           range "1..65535";
         }
         type enumeration {
           enum infinity {
             description
               "The timer is set to infinity.";
           }
           enum not-set {
             description
               "The timer is not set.";
           }
         }
       }
       units "seconds";
       description
         "Timer value type, in seconds (16-bit range).";
     }

     typedef timer-value-seconds32 {
       type union {
         type uint32 {
           range "1..4294967295";
         }
         type enumeration {
           enum infinity {
             description
               "The timer is set to infinity.";
           }
           enum not-set {
             description
               "The timer is not set.";
           }
         }
       }
       units "seconds";
       description
         "Timer value type, in seconds (32-bit range).";
     }
Top   ToC   RFC8294 - Page 22
     typedef timer-value-milliseconds {
       type union {
         type uint32 {
           range "1..4294967295";
         }
         type enumeration {
           enum infinity {
             description
               "The timer is set to infinity.";
           }
           enum not-set {
             description
               "The timer is not set.";
           }
         }
       }
       units "milliseconds";
       description
         "Timer value type, in milliseconds.";
     }

     typedef percentage {
       type uint8 {
         range "0..100";
       }
       description
         "Integer indicating a percentage value.";
     }

     typedef timeticks64 {
       type uint64;
       description
         "This type is based on the timeticks type defined in
          RFC 6991, but with 64-bit width.  It represents the time,
          modulo 2^64, in hundredths of a second between two epochs.";
       reference
         "RFC 6991: Common YANG Data Types.";
     }

     typedef uint24 {
       type uint32 {
         range "0..16777215";
       }
       description
         "24-bit unsigned integer.";
     }
Top   ToC   RFC8294 - Page 23
     /*** Collection of types related to MPLS/GMPLS ***/

     typedef generalized-label {
       type binary;
       description
         "Generalized Label.  Nodes sending and receiving the
          Generalized Label are aware of the link-specific
          label context and type.";
       reference
         "RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS)
          Signaling Functional Description.  Section 3.2.";
     }

     typedef mpls-label-special-purpose {
       type identityref {
         base mpls-label-special-purpose-value;
       }
       description
         "This type represents the special-purpose MPLS label values.";
       reference
         "RFC 3032: MPLS Label Stack Encoding.
          RFC 7274: Allocating and Retiring Special-Purpose MPLS
          Labels.";
     }

     typedef mpls-label-general-use {
       type uint32 {
         range "16..1048575";
       }
       description
         "The 20-bit label value in an MPLS label stack as specified
          in RFC 3032.  This label value does not include the
          encodings of Traffic Class and TTL (Time to Live).
          The label range specified by this type is for general use,
          with special-purpose MPLS label values excluded.";
       reference
         "RFC 3032: MPLS Label Stack Encoding.";
     }
Top   ToC   RFC8294 - Page 24
     typedef mpls-label {
       type union {
         type mpls-label-special-purpose;
         type mpls-label-general-use;
       }
       description
         "The 20-bit label value in an MPLS label stack as specified
          in RFC 3032.  This label value does not include the
          encodings of Traffic Class and TTL.";
       reference
         "RFC 3032: MPLS Label Stack Encoding.";
     }

     /*** Groupings **/

     grouping mpls-label-stack {
       description
         "This grouping specifies an MPLS label stack.  The label
          stack is encoded as a list of label stack entries.  The
          list key is an identifier that indicates the relative
          ordering of each entry, with the lowest-value identifier
          corresponding to the top of the label stack.";
       container mpls-label-stack {
         description
           "Container for a list of MPLS label stack entries.";
         list entry {
           key "id";
           description
             "List of MPLS label stack entries.";
           leaf id {
             type uint8;
             description
               "Identifies the entry in a sequence of MPLS label
                stack entries.  An entry with a smaller identifier
                value precedes an entry with a larger identifier
                value in the label stack.  The value of this ID has
                no semantic meaning other than relative ordering
                and referencing the entry.";
           }
           leaf label {
             type rt-types:mpls-label;
             description
               "Label value.";
           }
Top   ToC   RFC8294 - Page 25
           leaf ttl {
             type uint8;
             description
               "Time to Live (TTL).";
             reference
               "RFC 3032: MPLS Label Stack Encoding.";
           }
           leaf traffic-class {
             type uint8 {
               range "0..7";
             }
             description
               "Traffic Class (TC).";
             reference
               "RFC 5462: Multiprotocol Label Switching (MPLS) Label
                Stack Entry: 'EXP' Field Renamed to 'Traffic Class'
                Field.";
           }
         }
       }
     }
Top   ToC   RFC8294 - Page 26
     grouping vpn-route-targets {
       description
         "A grouping that specifies Route Target import-export rules
          used in BGP-enabled VPNs.";
       reference
         "RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs).
          RFC 4664: Framework for Layer 2 Virtual Private Networks
          (L2VPNs).";
       list vpn-target {
         key "route-target";
         description
           "List of Route Targets.";
         leaf route-target {
           type rt-types:route-target;
           description
             "Route Target value.";
         }
         leaf route-target-type {
           type rt-types:route-target-type;
           mandatory true;
           description
             "Import/export type of the Route Target.";
         }
       }
     }
   }

   <CODE ENDS>


(next page on part 2)

Next Section