Tech-invite3GPPspaceIETFspace
959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 7938

Use of BGP for Routing in Large-Scale Data Centers

Pages: 35
Informational
Errata
Part 2 of 2 – Pages 20 to 35
First   Prev   None

Top   ToC   RFC7938 - Page 20   prevText

6. ECMP Considerations

This section covers the Equal Cost Multipath (ECMP) functionality for Clos topology and discusses a few special requirements.

6.1. Basic ECMP

ECMP is the fundamental load-sharing mechanism used by a Clos topology. Effectively, every lower-tier device will use all of its directly attached upper-tier devices to load-share traffic destined to the same IP prefix. The number of ECMP paths between any two Tier 3 devices in Clos topology is equal to the number of the devices in the middle stage (Tier 1). For example, Figure 5 illustrates a topology where Tier 3 device A has four paths to reach servers X and Y, via Tier 2 devices B and C and then Tier 1 devices 1, 2, 3, and 4, respectively. Tier 1 +-----+ | DEV | +->| 1 |--+ | +-----+ | Tier 2 | | Tier 2 +-----+ | +-----+ | +-----+ +------------>| DEV |--+->| DEV |--+--| |-------------+ | +-----| B |--+ | 2 | +--| |-----+ | | | +-----+ +-----+ +-----+ | | | | | | | | +-----+ +-----+ +-----+ | | | +-----+---->| DEV |--+ | DEV | +--| |-----+-----+ | | | | +---| C |--+->| 3 |--+--| |---+ | | | | | | | +-----+ | +-----+ | +-----+ | | | | | | | | | | | | | | +-----+ +-----+ | +-----+ | +-----+ +-----+ | DEV | | | Tier 3 +->| DEV |--+ Tier 3 | | | | | A | | | | 4 | | | | | +-----+ +-----+ +-----+ +-----+ +-----+ | | | | | | | | O O O O <- Servers -> X Y O O Figure 5: ECMP Fan-Out Tree from A to X and Y The ECMP requirement implies that the BGP implementation must support multipath fan-out for up to the maximum number of devices directly attached at any point in the topology in the upstream or downstream direction. Normally, this number does not exceed half of the ports found on a device in the topology. For example, an ECMP fan-out of 32 would be required when building a Clos network using 64-port
Top   ToC   RFC7938 - Page 21
   devices.  The Border Routers may need to have wider fan-out to be
   able to connect to a multitude of Tier 1 devices if route
   summarization at Border Router level is implemented as described in
   Section 5.2.5.  If a device's hardware does not support wider ECMP,
   logical link-grouping (link-aggregation at Layer 2) could be used to
   provide "hierarchical" ECMP (Layer 3 ECMP coupled with Layer 2 ECMP)
   to compensate for fan-out limitations.  However, this approach
   increases the risk of flow polarization, as less entropy will be
   available at the second stage of ECMP.

   Most BGP implementations declare paths to be equal from an ECMP
   perspective if they match up to and including step (e) in
   Section 9.1.2.2 of [RFC4271].  In the proposed network design there
   is no underlying IGP, so all IGP costs are assumed to be zero or
   otherwise the same value across all paths and policies may be applied
   as necessary to equalize BGP attributes that vary in vendor defaults,
   such as the MULTI_EXIT_DISC (MED) attribute and origin code.  For
   historical reasons, it is also useful to not use 0 as the equalized
   MED value; this and some other useful BGP information is available in
   [RFC4277].  Routing loops are unlikely due to the BGP best-path
   selection process (which prefers shorter AS_PATH length), and longer
   paths through the Tier 1 devices (which don't allow their own ASN in
   the path) are not possible.

6.2. BGP ECMP over Multiple ASNs

For application load-balancing purposes, it is desirable to have the same prefix advertised from multiple Tier 3 devices. From the perspective of other devices, such a prefix would have BGP paths with different AS_PATH attribute values, while having the same AS_PATH attribute lengths. Therefore, BGP implementations must support load- sharing over the above-mentioned paths. This feature is sometimes known as "multipath relax" or "multipath multiple-AS" and effectively allows for ECMP to be done across different neighboring ASNs if all other attributes are equal as already described in the previous section.

6.3. Weighted ECMP

It may be desirable for the network devices to implement "weighted" ECMP, to be able to send more traffic over some paths in ECMP fan- out. This could be helpful to compensate for failures in the network and send more traffic over paths that have more capacity. The prefixes that require weighted ECMP would have to be injected using remote BGP speaker (central agent) over a multi-hop session as described further in Section 8.1. If support in implementations is available, weight distribution for multiple BGP paths could be signaled using the technique described in [LINK].
Top   ToC   RFC7938 - Page 22

6.4. Consistent Hashing

It is often desirable to have the hashing function used for ECMP to be consistent (see [CONS-HASH]), to minimize the impact on flow to next-hop affinity changes when a next hop is added or removed to an ECMP group. This could be used if the network device is used as a load balancer, mapping flows toward multiple destinations -- in this case, losing or adding a destination will not have a detrimental effect on currently established flows. One particular recommendation on implementing consistent hashing is provided in [RFC2992], though other implementations are possible. This functionality could be naturally combined with weighted ECMP, with the impact of the next hop changes being proportional to the weight of the given next hop. The downside of consistent hashing is increased load on hardware resource utilization, as typically more resources (e.g., Ternary Content-Addressable Memory (TCAM) space) are required to implement a consistent-hashing function.

7. Routing Convergence Properties

This section reviews routing convergence properties in the proposed design. A case is made that sub-second convergence is achievable if the implementation supports fast EBGP peering session deactivation and timely RIB and FIB updates upon failure of the associated link.

7.1. Fault Detection Timing

BGP typically relies on an IGP to route around link/node failures inside an AS, and implements either a polling-based or an event- driven mechanism to obtain updates on IGP state changes. The proposed routing design does not use an IGP, so the remaining mechanisms that could be used for fault detection are BGP keep-alive time-out (or any other type of keep-alive mechanism) and link-failure triggers. Relying solely on BGP keep-alive packets may result in high convergence delays, on the order of multiple seconds (on many BGP implementations the minimum configurable BGP hold timer value is three seconds). However, many BGP implementations can shut down local EBGP peering sessions in response to the "link down" event for the outgoing interface used for BGP peering. This feature is sometimes called "fast fallover". Since links in modern data centers are predominantly point-to-point fiber connections, a physical interface failure is often detected in milliseconds and subsequently triggers a BGP reconvergence.
Top   ToC   RFC7938 - Page 23
   Ethernet links may support failure signaling or detection standards
   such as Connectivity Fault Management (CFM) as described in
   [IEEE8021Q]; this may make failure detection more robust.
   Alternatively, some platforms may support Bidirectional Forwarding
   Detection (BFD) [RFC5880] to allow for sub-second failure detection
   and fault signaling to the BGP process.  However, the use of either
   of these presents additional requirements to vendor software and
   possibly hardware, and may contradict REQ1.  Until recently with
   [RFC7130], BFD also did not allow detection of a single member link
   failure on a LAG, which would have limited its usefulness in some
   designs.

7.2. Event Propagation Timing

In the proposed design, the impact of the BGP MinRouteAdvertisementIntervalTimer (MRAI timer), as specified in Section 9.2.1.1 of [RFC4271], should be considered. Per the standard, it is required for BGP implementations to space out consecutive BGP UPDATE messages by at least MRAI seconds, which is often a configurable value. The initial BGP UPDATE messages after an event carrying withdrawn routes are commonly not affected by this timer. The MRAI timer may present significant convergence delays when a BGP speaker "waits" for the new path to be learned from its peers and has no local backup path information. In a Clos topology, each EBGP speaker typically has either one path (Tier 2 devices don't accept paths from other Tier 2 in the same cluster due to same ASN) or N paths for the same prefix, where N is a significantly large number, e.g., N=32 (the ECMP fan-out to the next tier). Therefore, if a link fails to another device from which a path is received there is either no backup path at all (e.g., from the perspective of a Tier 2 switch losing the link to a Tier 3 device), or the backup is readily available in BGP Loc-RIB (e.g., from the perspective of a Tier 2 device losing the link to a Tier 1 switch). In the former case, the BGP withdrawal announcement will propagate without delay and trigger reconvergence on affected devices. In the latter case, the best path will be re-evaluated, and the local ECMP group corresponding to the new next-hop set will be changed. If the BGP path was the best path selected previously, an "implicit withdraw" will be sent via a BGP UPDATE message as described as Option b in Section 3.1 of [RFC4271] due to the BGP AS_PATH attribute changing.
Top   ToC   RFC7938 - Page 24

7.3. Impact of Clos Topology Fan-Outs

Clos topology has large fan-outs, which may impact the "Up->Down" convergence in some cases, as described in this section. In a situation when a link between Tier 3 and Tier 2 device fails, the Tier 2 device will send BGP UPDATE messages to all upstream Tier 1 devices, withdrawing the affected prefixes. The Tier 1 devices, in turn, will relay these messages to all downstream Tier 2 devices (except for the originator). Tier 2 devices other than the one originating the UPDATE should then wait for ALL upstream Tier 1 devices to send an UPDATE message before removing the affected prefixes and sending corresponding UPDATE downstream to connected Tier 3 devices. If the original Tier 2 device or the relaying Tier 1 devices introduce some delay into their UPDATE message announcements, the result could be UPDATE message "dispersion", that could be as long as multiple seconds. In order to avoid such a behavior, BGP implementations must support "update groups". The "update group" is defined as a collection of neighbors sharing the same outbound policy -- the local speaker will send BGP updates to the members of the group synchronously. The impact of such "dispersion" grows with the size of topology fan- out and could also grow under network convergence churn. Some operators may be tempted to introduce "route flap dampening" type features that vendors include to reduce the control-plane impact of rapidly flapping prefixes. However, due to issues described with false positives in these implementations especially under such "dispersion" events, it is not recommended to enable this feature in this design. More background and issues with "route flap dampening" and possible implementation changes that could affect this are well described in [RFC7196].

7.4. Failure Impact Scope

A network is declared to converge in response to a failure once all devices within the failure impact scope are notified of the event and have recalculated their RIBs and consequently updated their FIBs. Larger failure impact scope typically means slower convergence since more devices have to be notified, and results in a less stable network. In this section, we describe BGP's advantages over link- state routing protocols in reducing failure impact scope for a Clos topology. BGP behaves like a distance-vector protocol in the sense that only the best path from the point of view of the local router is sent to neighbors. As such, some failures are masked if the local node can immediately find a backup path and does not have to send any updates further. Notice that in the worst case, all devices in a data center
Top   ToC   RFC7938 - Page 25
   topology have to either withdraw a prefix completely or update the
   ECMP groups in their FIBs.  However, many failures will not result in
   such a wide impact.  There are two main failure types where impact
   scope is reduced:

   o  Failure of a link between Tier 2 and Tier 1 devices: In this case,
      a Tier 2 device will update the affected ECMP groups, removing the
      failed link.  There is no need to send new information to
      downstream Tier 3 devices, unless the path was selected as best by
      the BGP process, in which case only an "implicit withdraw" needs
      to be sent and this should not affect forwarding.  The affected
      Tier 1 device will lose the only path available to reach a
      particular cluster and will have to withdraw the associated
      prefixes.  Such a prefix withdrawal process will only affect Tier
      2 devices directly connected to the affected Tier 1 device.  The
      Tier 2 devices receiving the BGP UPDATE messages withdrawing
      prefixes will simply have to update their ECMP groups.  The Tier 3
      devices are not involved in the reconvergence process.

   o  Failure of a Tier 1 device: In this case, all Tier 2 devices
      directly attached to the failed node will have to update their
      ECMP groups for all IP prefixes from a non-local cluster.  The
      Tier 3 devices are once again not involved in the reconvergence
      process, but may receive "implicit withdraws" as described above.

   Even in the case of such failures where multiple IP prefixes will
   have to be reprogrammed in the FIB, it is worth noting that all of
   these prefixes share a single ECMP group on a Tier 2 device.
   Therefore, in the case of implementations with a hierarchical FIB,
   only a single change has to be made to the FIB.  "Hierarchical FIB"
   here means FIB structure where the next-hop forwarding information is
   stored separately from the prefix lookup table, and the latter only
   stores pointers to the respective forwarding information.  See
   [BGP-PIC] for discussion of FIB hierarchies and fast convergence.

   Even though BGP offers reduced failure scope for some cases, further
   reduction of the fault domain using summarization is not always
   possible with the proposed design, since using this technique may
   create routing black-holes as mentioned previously.  Therefore, the
   worst failure impact scope on the control plane is the network as a
   whole -- for instance, in the case of a link failure between Tier 2
   and Tier 3 devices.  The amount of impacted prefixes in this case
   would be much less than in the case of a failure in the upper layers
   of a Clos network topology.  The property of having such large
   failure scope is not a result of choosing EBGP in the design but
   rather a result of using the Clos topology.
Top   ToC   RFC7938 - Page 26

7.5. Routing Micro-Loops

When a downstream device, e.g., Tier 2 device, loses all paths for a prefix, it normally has the default route pointing toward the upstream device -- in this case, the Tier 1 device. As a result, it is possible to get in the situation where a Tier 2 switch loses a prefix, but a Tier 1 switch still has the path pointing to the Tier 2 device; this results in a transient micro-loop, since the Tier 1 switch will keep passing packets to the affected prefix back to the Tier 2 device, and the Tier 2 will bounce them back again using the default route. This micro-loop will last for the time it takes the upstream device to fully update its forwarding tables. To minimize impact of such micro-loops, Tier 2 and Tier 1 switches can be configured with static "discard" or "null" routes that will be more specific than the default route for prefixes missing during network convergence. For Tier 2 switches, the discard route should be a summary route, covering all server subnets of the underlying Tier 3 devices. For Tier 1 devices, the discard route should be a summary covering the server IP address subnets allocated for the whole data center. Those discard routes will only take precedence for the duration of network convergence, until the device learns a more specific prefix via a new path.

8. Additional Options for Design

8.1. Third-Party Route Injection

BGP allows for a "third-party", i.e., a directly attached BGP speaker, to inject routes anywhere in the network topology, meeting REQ5. This can be achieved by peering via a multi-hop BGP session with some or even all devices in the topology. Furthermore, BGP diverse path distribution [RFC6774] could be used to inject multiple BGP next hops for the same prefix to facilitate load balancing, or using the BGP ADD-PATH capability [RFC7911] if supported by the implementation. Unfortunately, in many implementations, ADD-PATH has been found to only support IBGP properly in the use cases for which it was originally optimized; this limits the "third-party" peering to IBGP only. To implement route injection in the proposed design, a third-party BGP speaker may peer with Tier 3 and Tier 1 switches, injecting the same prefix, but using a special set of BGP next hops for Tier 1 devices. Those next hops are assumed to resolve recursively via BGP, and could be, for example, IP addresses on Tier 3 devices. The resulting forwarding table programming could provide desired traffic proportion distribution among different clusters.
Top   ToC   RFC7938 - Page 27

8.2. Route Summarization within Clos Topology

As mentioned previously, route summarization is not possible within the proposed Clos topology since it makes the network susceptible to route black-holing under single link failures. The main problem is the limited number of redundant paths between network elements, e.g., there is only a single path between any pair of Tier 1 and Tier 3 devices. However, some operators may find route aggregation desirable to improve control-plane stability. If any technique to summarize within the topology is planned, modeling of the routing behavior and potential for black-holing should be done not only for single or multiple link failures, but also for fiber pathway failures or optical domain failures when the topology extends beyond a physical location. Simple modeling can be done by checking the reachability on devices doing summarization under the condition of a link or pathway failure between a set of devices in every tier as well as to the WAN routers when external connectivity is present. Route summarization would be possible with a small modification to the network topology, though the tradeoff would be reduction of the total size of the network as well as network congestion under specific failures. This approach is very similar to the technique described above, which allows Border Routers to summarize the entire data center address space.

8.2.1. Collapsing Tier 1 Devices Layer

In order to add more paths between Tier 1 and Tier 3 devices, group Tier 2 devices into pairs, and then connect the pairs to the same group of Tier 1 devices. This is logically equivalent to "collapsing" Tier 1 devices into a group of half the size, merging the links on the "collapsed" devices. The result is illustrated in Figure 6. For example, in this topology DEV C and DEV D connect to the same set of Tier 1 devices (DEV 1 and DEV 2), whereas before they were connecting to different groups of Tier 1 devices.
Top   ToC   RFC7938 - Page 28
                    Tier 2       Tier 1       Tier 2
                   +-----+      +-----+      +-----+
     +-------------| DEV |------| DEV |------|     |-------------+
     |       +-----|  C  |--++--|  1  |--++--|     |-----+       |
     |       |     +-----+  ||  +-----+  ||  +-----+     |       |
     |       |              ||           ||              |       |
     |       |     +-----+  ||  +-----+  ||  +-----+     |       |
     | +-----+-----| DEV |--++--| DEV |--++--|     |-----+-----+ |
     | |     | +---|  D  |------|  2  |------|     |---+ |     | |
     | |     | |   +-----+      +-----+      +-----+   | |     | |
     | |     | |                                       | |     | |
   +-----+ +-----+                                   +-----+ +-----+
   | DEV | | DEV |                                   |     | |     |
   |  A  | |  B  | Tier 3                     Tier 3 |     | |     |
   +-----+ +-----+                                   +-----+ +-----+
     | |     | |                                       | |     | |
     O O     O O             <- Servers ->             O O     O O

                      Figure 6: 5-Stage Clos Topology

   Having this design in place, Tier 2 devices may be configured to
   advertise only a default route down to Tier 3 devices.  If a link
   between Tier 2 and Tier 3 fails, the traffic will be re-routed via
   the second available path known to a Tier 2 switch.  It is still not
   possible to advertise a summary route covering prefixes for a single
   cluster from Tier 2 devices since each of them has only a single path
   down to this prefix.  It would require dual-homed servers to
   accomplish that.  Also note that this design is only resilient to
   single link failures.  It is possible for a double link failure to
   isolate a Tier 2 device from all paths toward a specific Tier 3
   device, thus causing a routing black-hole.

   A result of the proposed topology modification would be a reduction
   of the port capacity of Tier 1 devices.  This limits the maximum
   number of attached Tier 2 devices, and therefore will limit the
   maximum DC network size.  A larger network would require different
   Tier 1 devices that have higher port density to implement this
   change.

   Another problem is traffic rebalancing under link failures.  Since
   there are two paths from Tier 1 to Tier 3, a failure of the link
   between Tier 1 and Tier 2 switch would result in all traffic that was
   taking the failed link to switch to the remaining path.  This will
   result in doubling the link utilization on the remaining link.
Top   ToC   RFC7938 - Page 29

8.2.2. Simple Virtual Aggregation

A completely different approach to route summarization is possible, provided that the main goal is to reduce the FIB size, while allowing the control plane to disseminate full routing information. Firstly, it could be easily noted that in many cases multiple prefixes, some of which are less specific, share the same set of the next hops (same ECMP group). For example, from the perspective of Tier 3 devices, all routes learned from upstream Tier 2 devices, including the default route, will share the same set of BGP next hops, provided that there are no failures in the network. This makes it possible to use the technique similar to that described in [RFC6769] and only install the least specific route in the FIB, ignoring more specific routes if they share the same next-hop set. For example, under normal network conditions, only the default route needs to be programmed into the FIB. Furthermore, if the Tier 2 devices are configured with summary prefixes covering all of their attached Tier 3 device's prefixes, the same logic could be applied in Tier 1 devices as well and, by induction to Tier 2/Tier 3 switches in different clusters. These summary routes should still allow for more specific prefixes to leak to Tier 1 devices, to enable detection of mismatches in the next-hop sets if a particular link fails, thus changing the next-hop set for a specific prefix. Restating once again, this technique does not reduce the amount of control-plane state (i.e., BGP UPDATEs, BGP Loc-RIB size), but only allows for more efficient FIB utilization, by detecting more specific prefixes that share their next-hop set with a subsuming less specific prefix.

8.3. ICMP Unreachable Message Masquerading

This section discusses some operational aspects of not advertising point-to-point link subnets into BGP, as previously identified as an option in Section 5.2.3. The operational impact of this decision could be seen when using the well-known "traceroute" tool. Specifically, IP addresses displayed by the tool will be the link's point-to-point addresses, and hence will be unreachable for management connectivity. This makes some troubleshooting more complicated. One way to overcome this limitation is by using the DNS subsystem to create the "reverse" entries for these point-to-point IP addresses pointing to the same name as the loopback address. The connectivity then can be made by resolving this name to the "primary" IP address
Top   ToC   RFC7938 - Page 30
   of the device, e.g., its Loopback interface, which is always
   advertised into BGP.  However, this creates a dependency on the DNS
   subsystem, which may be unavailable during an outage.

   Another option is to make the network device perform IP address
   masquerading, that is, rewriting the source IP addresses of the
   appropriate ICMP messages sent by the device with the "primary" IP
   address of the device.  Specifically, the ICMP Destination
   Unreachable Message (type 3) code 3 (port unreachable) and ICMP Time
   Exceeded (type 11) code 0 are required for correct operation of the
   "traceroute" tool.  With this modification, the "traceroute" probes
   sent to the devices will always be sent back with the "primary" IP
   address as the source, allowing the operator to discover the
   "reachable" IP address of the box.  This has the downside of hiding
   the address of the "entry point" into the device.  If the devices
   support [RFC5837], this may allow the best of both worlds by
   providing the information about the incoming interface even if the
   return address is the "primary" IP address.

9. Security Considerations

The design does not introduce any additional security concerns. General BGP security considerations are discussed in [RFC4271] and [RFC4272]. Since a DC is a single-operator domain, this document assumes that edge filtering is in place to prevent attacks against the BGP sessions themselves from outside the perimeter of the DC. This may be a more feasible option for most deployments than having to deal with key management for TCP MD5 as described in [RFC2385] or dealing with the lack of implementations of the TCP Authentication Option [RFC5925] available at the time of publication of this document. The Generalized TTL Security Mechanism [RFC5082] could also be used to further reduce the risk of BGP session spoofing.

10. References

10.1. Normative References

[RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A Border Gateway Protocol 4 (BGP-4)", RFC 4271, DOI 10.17487/RFC4271, January 2006, <http://www.rfc-editor.org/info/rfc4271>. [RFC6996] Mitchell, J., "Autonomous System (AS) Reservation for Private Use", BCP 6, RFC 6996, DOI 10.17487/RFC6996, July 2013, <http://www.rfc-editor.org/info/rfc6996>.
Top   ToC   RFC7938 - Page 31

10.2. Informative References

[ALFARES2008] Al-Fares, M., Loukissas, A., and A. Vahdat, "A Scalable, Commodity Data Center Network Architecture", DOI 10.1145/1402958.1402967, August 2008, <http://dl.acm.org/citation.cfm?id=1402967>. [ALLOWASIN] Cisco Systems, "Allowas-in Feature in BGP Configuration Example", February 2015, <http://www.cisco.com/c/en/us/support/docs/ip/ border-gateway-protocol-bgp/112236-allowas-in-bgp-config- example.html>. [BGP-PIC] Bashandy, A., Ed., Filsfils, C., and P. Mohapatra, "BGP Prefix Independent Convergence", Work in Progress, draft-ietf-rtgwg-bgp-pic-02, August 2016. [CLOS1953] Clos, C., "A Study of Non-Blocking Switching Networks", The Bell System Technical Journal, Vol. 32(2), DOI 10.1002/j.1538-7305.1953.tb01433.x, March 1953. [CONDITIONALROUTE] Cisco Systems, "Configuring and Verifying the BGP Conditional Advertisement Feature", August 2005, <http://www.cisco.com/c/en/us/support/docs/ip/ border-gateway-protocol-bgp/16137-cond-adv.html>. [CONS-HASH] Wikipedia, "Consistent Hashing", July 2016, <https://en.wikipedia.org/w/ index.php?title=Consistent_hashing&oldid=728825684>. [FB4POST] Farrington, N. and A. Andreyev, "Facebook's Data Center Network Architecture", May 2013, <http://nathanfarrington.com/papers/facebook-oic13.pdf>. [GREENBERG2009] Greenberg, A., Hamilton, J., and D. Maltz, "The Cost of a Cloud: Research Problems in Data Center Networks", DOI 10.1145/1496091.1496103, January 2009, <http://dl.acm.org/citation.cfm?id=1496103>. [HADOOP] Apache, "Apache Hadoop", April 2016, <https://hadoop.apache.org/>.
Top   ToC   RFC7938 - Page 32
   [IANA.AS]  IANA, "Autonomous System (AS) Numbers",
              <http://www.iana.org/assignments/as-numbers>.

   [IEEE8021D-1990]
              IEEE, "IEEE Standard for Local and Metropolitan Area
              Networks: Media Access Control (MAC) Bridges", IEEE
              Std 802.1D, DOI 10.1109/IEEESTD.1991.101050, 1991,
              <http://ieeexplore.ieee.org/servlet/opac?punumber=2255>.

   [IEEE8021D-2004]
              IEEE, "IEEE Standard for Local and Metropolitan Area
              Networks: Media Access Control (MAC) Bridges", IEEE
              Std 802.1D, DOI 10.1109/IEEESTD.2004.94569, June 2004,
              <http://ieeexplore.ieee.org/servlet/opac?punumber=9155>.

   [IEEE8021Q]
              IEEE, "IEEE Standard for Local and Metropolitan Area
              Networks: Bridges and Bridged Networks", IEEE Std 802.1Q,
              DOI 10.1109/IEEESTD.2014.6991462,
              <http://ieeexplore.ieee.org/servlet/
              opac?punumber=6991460>.

   [IEEE8023AD]
              IEEE, "Amendment to Carrier Sense Multiple Access With
              Collision Detection (CSMA/CD) Access Method and Physical
              Layer Specifications - Aggregation of Multiple Link
              Segments", IEEE Std 802.3ad,
              DOI 10.1109/IEEESTD.2000.91610, October 2000,
              <http://ieeexplore.ieee.org/servlet/opac?punumber=6867>.

   [INTERCON] Dally, W. and B. Towles, "Principles and Practices of
              Interconnection Networks", ISBN 978-0122007514, January
              2004, <http://dl.acm.org/citation.cfm?id=995703>.

   [JAKMA2008]
              Jakma, P., "BGP Path Hunting", 2008,
              <https://blogs.oracle.com/paulj/entry/bgp_path_hunting>.

   [L3DSR]    Schaumann, J., "L3DSR - Overcoming Layer 2 Limitations of
              Direct Server Return Load Balancing", 2011,
              <https://www.nanog.org/meetings/nanog51/presentations/
              Monday/NANOG51.Talk45.nanog51-Schaumann.pdf>.

   [LINK]     Mohapatra, P. and R. Fernando, "BGP Link Bandwidth
              Extended Community", Work in Progress, draft-ietf-idr-
              link-bandwidth-06, January 2013.
Top   ToC   RFC7938 - Page 33
   [REMOVAL]  Mitchell, J., Rao, D., and R. Raszuk, "Private Autonomous
              System (AS) Removal Requirements", Work in Progress,
              draft-mitchell-grow-remove-private-as-04, April 2015.

   [RFC2328]  Moy, J., "OSPF Version 2", STD 54, RFC 2328,
              DOI 10.17487/RFC2328, April 1998,
              <http://www.rfc-editor.org/info/rfc2328>.

   [RFC2385]  Heffernan, A., "Protection of BGP Sessions via the TCP MD5
              Signature Option", RFC 2385, DOI 10.17487/RFC2385, August
              1998, <http://www.rfc-editor.org/info/rfc2385>.

   [RFC2992]  Hopps, C., "Analysis of an Equal-Cost Multi-Path
              Algorithm", RFC 2992, DOI 10.17487/RFC2992, November 2000,
              <http://www.rfc-editor.org/info/rfc2992>.

   [RFC4272]  Murphy, S., "BGP Security Vulnerabilities Analysis",
              RFC 4272, DOI 10.17487/RFC4272, January 2006,
              <http://www.rfc-editor.org/info/rfc4272>.

   [RFC4277]  McPherson, D. and K. Patel, "Experience with the BGP-4
              Protocol", RFC 4277, DOI 10.17487/RFC4277, January 2006,
              <http://www.rfc-editor.org/info/rfc4277>.

   [RFC4786]  Abley, J. and K. Lindqvist, "Operation of Anycast
              Services", BCP 126, RFC 4786, DOI 10.17487/RFC4786,
              December 2006, <http://www.rfc-editor.org/info/rfc4786>.

   [RFC5082]  Gill, V., Heasley, J., Meyer, D., Savola, P., Ed., and C.
              Pignataro, "The Generalized TTL Security Mechanism
              (GTSM)", RFC 5082, DOI 10.17487/RFC5082, October 2007,
              <http://www.rfc-editor.org/info/rfc5082>.

   [RFC5837]  Atlas, A., Ed., Bonica, R., Ed., Pignataro, C., Ed., Shen,
              N., and JR. Rivers, "Extending ICMP for Interface and
              Next-Hop Identification", RFC 5837, DOI 10.17487/RFC5837,
              April 2010, <http://www.rfc-editor.org/info/rfc5837>.

   [RFC5880]  Katz, D. and D. Ward, "Bidirectional Forwarding Detection
              (BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
              <http://www.rfc-editor.org/info/rfc5880>.

   [RFC5925]  Touch, J., Mankin, A., and R. Bonica, "The TCP
              Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
              June 2010, <http://www.rfc-editor.org/info/rfc5925>.
Top   ToC   RFC7938 - Page 34
   [RFC6325]  Perlman, R., Eastlake 3rd, D., Dutt, D., Gai, S., and A.
              Ghanwani, "Routing Bridges (RBridges): Base Protocol
              Specification", RFC 6325, DOI 10.17487/RFC6325, July 2011,
              <http://www.rfc-editor.org/info/rfc6325>.

   [RFC6769]  Raszuk, R., Heitz, J., Lo, A., Zhang, L., and X. Xu,
              "Simple Virtual Aggregation (S-VA)", RFC 6769,
              DOI 10.17487/RFC6769, October 2012,
              <http://www.rfc-editor.org/info/rfc6769>.

   [RFC6774]  Raszuk, R., Ed., Fernando, R., Patel, K., McPherson, D.,
              and K. Kumaki, "Distribution of Diverse BGP Paths",
              RFC 6774, DOI 10.17487/RFC6774, November 2012,
              <http://www.rfc-editor.org/info/rfc6774>.

   [RFC6793]  Vohra, Q. and E. Chen, "BGP Support for Four-Octet
              Autonomous System (AS) Number Space", RFC 6793,
              DOI 10.17487/RFC6793, December 2012,
              <http://www.rfc-editor.org/info/rfc6793>.

   [RFC7067]  Dunbar, L., Eastlake 3rd, D., Perlman, R., and I.
              Gashinsky, "Directory Assistance Problem and High-Level
              Design Proposal", RFC 7067, DOI 10.17487/RFC7067, November
              2013, <http://www.rfc-editor.org/info/rfc7067>.

   [RFC7130]  Bhatia, M., Ed., Chen, M., Ed., Boutros, S., Ed.,
              Binderberger, M., Ed., and J. Haas, Ed., "Bidirectional
              Forwarding Detection (BFD) on Link Aggregation Group (LAG)
              Interfaces", RFC 7130, DOI 10.17487/RFC7130, February
              2014, <http://www.rfc-editor.org/info/rfc7130>.

   [RFC7196]  Pelsser, C., Bush, R., Patel, K., Mohapatra, P., and O.
              Maennel, "Making Route Flap Damping Usable", RFC 7196,
              DOI 10.17487/RFC7196, May 2014,
              <http://www.rfc-editor.org/info/rfc7196>.

   [RFC7911]  Walton, D., Retana, A., Chen, E., and J. Scudder,
              "Advertisement of Multiple Paths in BGP", RFC 7911,
              DOI 10.17487/RFC7911, July 2016,
              <http://www.rfc-editor.org/info/rfc7911>.

   [VENDOR-REMOVE-PRIVATE-AS]
              Cisco Systems, "Removing Private Autonomous System Numbers
              in BGP", August 2005,
              <http://www.cisco.com/en/US/tech/tk365/
              technologies_tech_note09186a0080093f27.shtml>.
Top   ToC   RFC7938 - Page 35

Acknowledgements

This publication summarizes the work of many people who participated in developing, testing, and deploying the proposed network design, some of whom were George Chen, Parantap Lahiri, Dave Maltz, Edet Nkposong, Robert Toomey, and Lihua Yuan. The authors would also like to thank Linda Dunbar, Anoop Ghanwani, Susan Hares, Danny McPherson, Robert Raszuk, and Russ White for reviewing this document and providing valuable feedback, and Mary Mitchell for initial grammar and style suggestions.

Authors' Addresses

Petr Lapukhov Facebook 1 Hacker Way Menlo Park, CA 94025 United States of America Email: petr@fb.com Ariff Premji Arista Networks 5453 Great America Parkway Santa Clara, CA 95054 United States of America Email: ariff@arista.com URI: http://arista.com/ Jon Mitchell (editor) Email: jrmitche@puck.nether.net