Internet Engineering Task Force (IETF) D. Sun, Ed. Request for Comments: 5866 Alcatel-Lucent Category: Standards Track P. McCann ISSN: 2070-1721 Motorola Labs H. Tschofenig Nokia Siemens Networks T. Tsou Huawei A. Doria Lulea University of Technology G. Zorn, Ed. Network Zen May 2010 Diameter Quality-of-Service ApplicationAbstract
This document describes the framework, messages, and procedures for the Diameter Quality-of-Service (QoS) application. The Diameter QoS application allows network elements to interact with Diameter servers when allocating QoS resources in the network. In particular, two modes of operation, namely "Pull" and "Push", are defined. Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc5866. Copyright Notice Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3 3. Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1. Network Element Functional Model . . . . . . . . . . . . . 7 3.2. Implications of Endpoint QoS Capabilities . . . . . . . . 8 3.2.1. Endpoint Categories . . . . . . . . . . . . . . . . . 8 3.2.2. Interaction Modes between the Authorizing Entity and Network Element . . . . . . . . . . . . . . . . . 9 3.3. Authorization Schemes . . . . . . . . . . . . . . . . . . 10 3.3.1. Pull Mode Schemes . . . . . . . . . . . . . . . . . . 10 3.3.2. Push Mode Schemes . . . . . . . . . . . . . . . . . . 13 3.4. QoS Application Requirements . . . . . . . . . . . . . . . 14 4. QoS Application Session Establishment and Management . . . . . 17 4.1. Parties Involved . . . . . . . . . . . . . . . . . . . . . 17 4.2. Session Establishment . . . . . . . . . . . . . . . . . . 18 4.2.1. Session Establishment for Pull Mode . . . . . . . . . 18 4.2.2. Session Establishment for Push Mode . . . . . . . . . 21 4.2.3. Discovery and Selection of Peer Diameter QoS Application Node . . . . . . . . . . . . . . . . . . . 24 4.3. Session Re-Authorization . . . . . . . . . . . . . . . . . 24 4.3.1. Client-Side Initiated Re-Authorization . . . . . . . . 25 4.3.2. Server-Side Initiated Re-Authorization . . . . . . . . 26 4.4. Session Termination . . . . . . . . . . . . . . . . . . . 28 4.4.1. Client-Side Initiated Session Termination . . . . . . 28 4.4.2. Server-Side Initiated Session Termination . . . . . . 28 5. QoS Application Messages . . . . . . . . . . . . . . . . . . . 29 5.1. QoS-Authorization Request (QAR) . . . . . . . . . . . . . 30 5.2. QoS-Authorization-Answer (QAA) . . . . . . . . . . . . . . 31 5.3. QoS-Install Request (QIR) . . . . . . . . . . . . . . . . 32 5.4. QoS-Install Answer (QIA) . . . . . . . . . . . . . . . . . 32 5.5. Re-Auth-Request (RAR) . . . . . . . . . . . . . . . . . . 33 5.6. Re-Auth-Answer (RAA) . . . . . . . . . . . . . . . . . . . 34 6. QoS Application State Machine . . . . . . . . . . . . . . . . 34 6.1. Supplemented States for Push Mode . . . . . . . . . . . . 34 7. QoS Application AVPs . . . . . . . . . . . . . . . . . . . . . 35 7.1. Reused Base Protocol AVPs . . . . . . . . . . . . . . . . 36 7.2. QoS Application-Defined AVPs . . . . . . . . . . . . . . . 36 8. Accounting . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 9.1. Example Call Flow for Pull Mode (Success Case) . . . . . . 38 9.2. Example Call Flow for Pull Mode (Failure Case) . . . . . . 40 9.3. Example Call Flow for Push Mode . . . . . . . . . . . . . 43 10. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 45 10.1. AVP Codes . . . . . . . . . . . . . . . . . . . . . . . . 45 10.2. Application IDs . . . . . . . . . . . . . . . . . . . . . 45 10.3. Command Codes . . . . . . . . . . . . . . . . . . . . . . 46 11. Security Considerations . . . . . . . . . . . . . . . . . . . 46 12. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 47 13. Contributors . . . . . . . . . . . . . . . . . . . . . . . . . 47 14. References . . . . . . . . . . . . . . . . . . . . . . . . . . 48 14.1. Normative References . . . . . . . . . . . . . . . . . . . 48 14.2. Informative References . . . . . . . . . . . . . . . . . . 481. Introduction
This document describes the framework, messages, and procedures for the Diameter [RFC3588] Quality-of-Service (QoS) application. The Diameter QoS application allows Network Elements (NEs) to interact with Diameter servers when allocating QoS resources in the network. Two modes of operation are defined. In the first, called "Pull" mode, the network element requests QoS authorization from the Diameter server based on some trigger (such as a QoS signaling protocol) that arrives along the data path. In the second, called "Push" mode, the Diameter server proactively sends a command to the network element(s) to install QoS authorization state. This could be triggered, for instance, by off-path signaling, such as Session Initiation Protocol (SIP) [RFC3261] call control. A set of command codes is specified that allows a single Diameter QoS application server to support both Pull and Push modes based on the requirements of network technologies, deployment scenarios, and end- host capabilities. In conjunction with Diameter Attribute Value Pairs (AVPs) defined in [RFC5777] and in [RFC5624], this document depicts basic call-flow procedures used to establish, modify, and terminate a Diameter QoS application session. This document defines a number of Diameter-encoded AVPs, which are described using a modified version of the Augmented Backus-Naur Form (ABNF), see [RFC3588].2. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
The following terms are used in this document:
AAA Cloud
An infrastructure of Authentication, Authorization, and Accounting
(AAA) entities (clients, agents, servers) communicating via a AAA
protocol over trusted, secure connections. It offers
authentication, authorization, and accounting services to
applications in local and roaming scenarios. Diameter and RADIUS
[RFC2865] are both widely deployed AAA protocols.
Application Endpoint (AppE)
An Application Endpoint is an entity in an end-user device that
exchanges signaling messages with Application Servers or directly
with other Application Endpoints. Based on the result of this
signaling, the endpoint may make a request for QoS from the
network. For example, a SIP User Agent is one kind of Application
Endpoint.
Application Server (AppS)
An Application Server is an entity that exchanges signaling
messages with an Application Endpoint (see above). It may be a
source of authorization for QoS-enhanced application flows. For
example, a SIP server is one kind of Application Server.
Authorizing Entity (AE)
The Authorizing Entity is a Diameter server that supports the QoS
application. It is responsible for authorizing QoS requests for a
particular application flow or aggregate. The Authorizing Entity
may be a standalone entity or may be integrated with an
Application Server and may be co-located with a subscriber
database. This entity corresponds to the Policy Decision Point
(PDP) [RFC2753].
Network Element (NE)
A QoS-aware router that acts as a Diameter client for the QoS
application. This entity triggers the protocol interaction for
Pull mode, and it is the recipient of QoS information in Push
mode. The Diameter client at a Network Element corresponds to the
Policy Enforcement Point (PEP) [RFC2753].
Pull Mode
In this mode, the QoS authorization process is invoked by the QoS
reservation request received from the Application Endpoint. The
Network Element then requests the QoS authorization decision from
the Authorizing Entity.
Push Mode
In this mode, the QoS authorization process is invoked by the
request from the Application Server or local policies in the
Authorizing Entity. The Authorizing Entity then installs the QoS
authorization decision to the Network Element directly.
Resource Requesting Entity (RRE)
A Resource Requesting Entity is a logical entity that supports the
protocol interaction for QoS resources. The RRE resides in the
end-host and is able to communicate with peer logical entities in
an Authorizing Entity or a Network Element to trigger the QoS
authorization process.
3. Framework
The Diameter QoS application runs between an NE (acting as a Diameter
client) and the resource AE (acting as a Diameter server). A high-
level picture of the resulting architecture is shown in Figure 1.
+-------+---------+
| Authorizing |
| Entity |
|(Diameter Server)|
+-------+---------+
|
|
/\-----+-----/\
//// \\\\
|| AAA Cloud ||
| (Diameter application) |
|| ||
\\\\ ////
\-------+-----/
|
+---+--+ +-----+----+ +---+--+
| | | NE | | | Media
+ NE +===+(Diameter +===+ NE +=============>>
| | | Client) | | | Flow
+------+ +----------+ +------+
Figure 1: An Architecture Supporting QoS-AAA
Figure 1 depicts NEs through which media flows need to pass, a cloud
of AAA servers, and an AE. Note that there may be more than one
router that needs to interact with the AAA cloud along the path of a
given application flow, although the figure only depicts one for
clarity.
In some deployment scenarios, NEs may request authorization through the AAA cloud based on an incoming QoS reservation request. The NE will route the request to a designated AE. The AE will return the result of the authorization decision. In other deployment scenarios, the authorization will be initiated upon dynamic application state, so that the request must be authenticated and authorized based on information from one or more AppSs. After receiving the authorization request from the AppS or the NE, the AE decides the appropriate mode (i.e., Push or Pull). The usage of Push or Pull mode can be determined by the Authorizing Entity either statically or dynamically. Static determination might be based on a configurable defined policy in the Authorizing Entity, while dynamic determination might be based on information received from an application server. For Push mode, the Authorizing Entity needs to identify the appropriate NE(s) to which QoS authorization information needs to be pushed. It might determine this based on information received from the AppS, such as the IP addresses of media flows. In some deployment scenarios, there is a mapping between access network type and the service logic (e.g., selection of Push or Pull mode and other differentiated handling of the resource admission and control). The access network type might be derived from the authorization request from the AppS or the NE, and in this case, the Authorizing Entity can identify the corresponding service logic based on the mapping. If the interface between the NEs and the AAA cloud is identical regardless of whether or not the AE communicates with an AppS, routers are insulated from the details of particular applications and need not know that Application Servers are involved. Also, the AAA cloud may also encompass business relationships such as those between network operators and third-party application providers. This enables flexible intra- or inter-domain authorization, accounting, and settlement.
3.1. Network Element Functional Model
Figure 2 depicts a logical operational model of resource management in a router. +-------------------------------------------------------+ | DIAMETER Client | | Functionality | | +---------------++-----------------++---------------+ | | | User || QoS Application || Accounting | | | | Authentication|| Client || Client (e.g., | | | | Client || (Authorization ||for QoS Traffic| | | +---------------+| of QoS Requests)|+---------------+ | | +-----------------+ | +-------------------------------------------------------+ ^ v +--------------+ +----------+ |QoS Signaling | | Resource | |Msg Processing|<<<<<>>>>>>>|Management| +--------------+ +----------+ . ^ | * ^ | v . * ^ +-------------+ * ^ |Signaling msg| * ^ | Processing | * V +-------------+ * V | | * V ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ . . * V | | * ............................. . . * . Traffic Control . | | * . +---------+. . . * . |Admission|. | | * . | Control |. +----------+ +------------+ . +---------+. <.->| Input | | Outgoing |<.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-> | Packet | | Interface | .+----------+ +---------+. ===>|Processing|====| Selection |===.| Packet |====| Packet |.=> | | |(Forwarding)| .|Classifier| Scheduler|. +----------+ +------------+ .+----------+ +---------+. ............................. <.-.-> = signaling flow =====> = data flow (sender --> receiver) <<<>>> = control and configuration operations ****** = routing table manipulation Figure 2: Network Element Functional Model
The processing of incoming QoS reservation requests includes three actions: admission control, authorization, and resource reservation. The admission control function provides information about available resources and determines whether there are enough resources to fulfill the request. Authorization is performed by the Diameter client, which involves contacting an authorization entity through the AAA cloud shown in Section 3. If both checks are successful, the authorized QoS parameters are set in the packet classifier and the packet scheduler. Note that the parameters passed to the Traffic Control function may be different from the ones that requested QoS (depending on the authorization decision). Once the requested resource is granted, the Resource Management function provides accounting information to the AE via the Diameter client.3.2. Implications of Endpoint QoS Capabilities
3.2.1. Endpoint Categories
The QoS capabilities of Application Endpoints are varied, and can be categorized as follows: Category 1 A Category 1 Application Endpoint has no QoS capability at either the application or the network level. This type of AppE may set up a connection through application signaling, but it is incapable of specifying resource/QoS requirements through either application- or network-level signaling. Category 2 A Category 2 Application Endpoint only has QoS capability at the application level. This type of AppE is able to set up a connection through application signaling with certain resource/QoS requirements (e.g., application attributes), but it is unable to signal any resource/QoS requirements at the network level. Category 3 A Category 3 Application Endpoint has QoS capability at the network level. This type of AppE may set up a connection through application signaling, translate service characteristics into network resource/QoS requirements (e.g., network QoS class) locally, and request the resources through network signaling, e.g., Resource ReSerVation Protocol (RSVP) [RFC2205] or Next Steps in Signaling (NSIS) [NSIS-QOS].
3.2.2. Interaction Modes between the Authorizing Entity and Network Element
Different QoS mechanisms are employed in packet networks. Those QoS mechanisms can be categorized into two schemes: IntServ [RFC2211] [RFC2212] and Diffserv [RFC2474]. In the IntServ scheme, network signaling (e.g., RSVP, NSIS, or link-specific signaling) is commonly used to initiate a request from an AppE for the desired QoS resource. In the Diffserv scheme, QoS resources are provisioned based upon some predefined QoS service classes rather than AppE-initiated, flow-based QoS requests. It is obvious that the eligible QoS scheme is correlated to the AppE's capability in the context of QoS authorization. Since Category 1 and 2 AppEs cannot initiate the QoS resource requests by means of network signaling, using the current mechanism of the IntServ model to signal QoS information across the network is not applicable to them in general. Depending on network technology and operator requirements, a Category 3 AppE may either make use of network signaling for resource requests or not. The diversity of QoS capabilities of endpoints and QoS schemes of network technology leads to the distinction on the interaction mode between the QoS authorization system and underlying NEs. When the IntServ scheme is employed by a Category 3 endpoint, the authorization process is typically initiated by an NE when a trigger is received from the endpoint such as network QoS signaling. In the Diffserv scheme, since the NE is unable to request the resource authorization on its own initiative, the authorization process is typically triggered by either the request of AppSs or policies defined by the operator. As a consequence, two interaction modes are needed in support of different combinations of QoS schemes and endpoint's QoS capabilities: Push mode and Pull mode. Push mode The QoS authorization process is triggered by AppSs or local network conditions (e.g., time of day on resource usage and QoS classes), and the authorization decisions are installed by the AE to the network element on its own initiative without explicit request. In order to support Push mode, the AE (i.e., Diameter server) should be able to initiate a Diameter authorization session to communicate with the NE (i.e., Diameter client) without any preestablished connection from the network element.
Pull mode
The QoS authorization process is triggered by the network
signaling received from end-user equipment or by a local event in
the NE according to pre-configured policies, and authorization
decisions are produced upon the request of the NE. In order to
support Pull mode, the NE (i.e., Diameter client) will initiate a
Diameter authorization session to communicate with the Authorizing
Entity (i.e., Diameter server).
For Category 1 and 2 Application Endpoints, Push mode is REQUIRED.
For a Category 3 AppE, either Push mode or Pull mode MAY be used.
Push mode is applicable to certain networks, for example, Cable
network, DSL, Ethernet, and Diffserv-enabled IP/MPLS. Pull mode is
more appropriate to IntServ-enabled IP networks or certain wireless
networks such as the General Packet Radio Service (GPRS) networks
defined by the Third Generation Partnership Project (3GPP). Some
networks (for example, Worldwide Interoperability for Microwave
Access (WiMAX)) may require both Push and Pull modes.
3.3. Authorization Schemes
3.3.1. Pull Mode Schemes
Three types of basic authorization schemes for Pull mode exist: one
type of two-party scheme and two types of three-party schemes. The
notation adopted here is in respect to the entity that performs the
QoS authorization (QoS Authz). The authentication of the QoS
requesting entity might be done at the NE as part of the QoS
signaling protocol, or by an off-path protocol (on the application
layer or for network access authentication) or the AE might be
contacted with a request for authentication and authorization of the
QoS requesting entity. From the Diameter QoS application's point of
view, these schemes differ in type of information that need to be
carried. Here we focus on the "Basic Three-Party Scheme" (see
Figure 3) and the "Token-Based Three-Party Scheme" (see Figure 4).
In the "Two-Party Scheme", the QoS RRE is authenticated by the NE and
the authorization decision is made either locally at the NE itself or
offloaded to a trusted entity (most likely within the same
administrative domain). In the two-party case, no Diameter QoS
protocol interaction is required.
+--------------+ | Authorizing | | Entity | | authorizing | <......+ | resource | . | request | . +------------+-+ . --^----------|-- . . ///// | | \\\\\ . // | | \\ . | QoS | QoS AAA | QoS |. | authz| protocol |authz |. | req.| | res. |. \\ | | // . \\\\\ | | ///// . QoS --|----------v-- . . +-------------+ request +-+------------+ . | Entity |----------------->| NE | . | requesting | | performing | . | resource |granted / rejected| QoS | <.....+ | |<-----------------| reservation | financial +-------------+ +--------------+ settlement Figure 3: Three-Party Scheme In the "Basic Three-Party Scheme", a QoS reservation request that arrives at the NE is forwarded to the Authorizing Entity (e.g., in the user's home network), where the authorization decision is made. As shown, financial settlement -- a business relationship, such as a roaming agreement -- between the visited network and the home network ensures that the visited network is compensated for the resources consumed by the user via the home network.
financial settlement ...........................+ Authorization V ------- . Token Request +--------------+ / QoS AAA \ . +-------------->| | / protocol \ . | | Authorizing +--------------+ \ . | | Entity | | | | . | +------+ |<--+----+ | | . | | +--------------+ |QoS | |QoS |. | | |authz| |authz|. | |Authorization |req.+| |res. |. | |Token |Token| | |. | | | | | . | . | | \ | | . / . | | \ | | / . | | QoS request |-----V . . +-------------+ + Authz Token +--------+-----+ . | Entity |----------------->| NE | . | requesting | | performing | . | resource |granted / rejected| QoS | <....+ | |<-----------------| reservation | +-------------+ +--------------+ Figure 4: Token-Based Three-Party Scheme The "Token-Based Three-Party Scheme" is applicable to environments where a previous protocol interaction is used to request authorization tokens to assist the authorization process at the NE or the AE [RFC3521]. The QoS RRE may be involved in an application-layer protocol interaction, for example, using SIP [RFC3313], with the AE. As part of this interaction, authentication and authorization at the application layer might take place. As a result of a successful authorization decision, which might involve the user's home AAA server, an authorization token is generated by the AE (e.g., the SIP proxy and an entity trusted by the SIP proxy) and returned to the end-host for inclusion into the QoS signaling protocol. The authorization token will be used by an NE that receives the QoS signaling message to authorize the QoS request. Alternatively, the Diameter QoS application will be used to forward the authorization token to the user's home network. The authorization token allows for the authorization decision performed at the application layer to be associated with a corresponding QoS signaling session. Note that the authorization token might either refer to established state concerning the authorization decision or the token might itself carry the authorized parameters (protected by a digital signature or a keyed message digest to prevent tampering). In the latter case, the
authorization token may contain several pieces of information
pertaining to the authorized application session, but at minimum it
should contain:
o An identifier for the AE (for example, an AppS) that issued the
authorization token;
o An identifier referring to a specific application protocol session
for which the token was issued; and
o A keyed message digest or digital signature protecting the content
of the authorization token.
A possible structure for the authorization token and the policy
element carrying it are proposed in the context of RSVP [RFC3520].
In the scenario mentioned above, where the QoS resource requesting
entity is involved in an application-layer protocol interaction with
the AE, it may be worthwhile to consider a token-less binding
mechanism also. The application-layer protocol interaction may have
indicated the transport port numbers at the QoS RRE where it might
receive media streams (for example, in SIP/SDP [RFC4566] signaling,
these port numbers are advertised). The QoS RRE may also use these
port numbers in some IP filter indications to the NE performing QoS
reservation so that it may properly tunnel the inbound packets. The
NE performing QoS reservation will forward the QoS resource
requesting entity's IP address and the IP filter indications to the
AE in the QoS authorization request. The AE will use the QoS RRE's
IP address and the port numbers in the IP filter indication, which
will match the port numbers advertised in the earlier application-
layer protocol interaction, to identify the right piece of policy
information to be sent to the NE performing the QoS reservation in
the QoS Authorization response.
3.3.2. Push Mode Schemes
Push mode can be further divided into two types: endpoint-initiated
and network-initiated. In the former case, the authorization process
is triggered by AppS in response to an explicit QoS request from an
endpoint through application signaling, e.g., SIP; in the latter
case, the authorization process is triggered by the AppS without an
explicit QoS request from an endpoint.
In the endpoint-initiated scheme, the QoS RRE (i.e., the AppE)
determines the required application-level QoS and sends a QoS request
through an application signaling message. The AppS will extract
application-level QoS information and trigger the authorization
process to the AE. In the network-initiated scheme, the AE and/or
AppS should derive and determine the QoS requirements according to application attribute, subscription, and endpoint capability when the endpoint does not explicitly indicate the QoS attributes. The AE makes an authorization decision based on application-level QoS information, network policies, end-user subscription, network resource availability, etc., and installs the decision to the NE directly. A Category 1 AppE requires network-initiated Push mode and a Category 2 AppE may use either type of Push Mode. financial settlement ...........................+ Application V ------- . signaling msg +--------------+ / QoS AAA \ . +-------------->| | / protocol \ . | | Authorizing +--------------+ \ . | | Entity | | | | . | + |<--+----+ | | . | +--------------+ |QoS | |QoS |. | install| |install | |rsp. | |req. |. | | | | |. | | | | . | . | \ | | . / . | \ | | / . V |-----V . . +-------------+ +--------+-----+ . | Entity | | NE | . | requesting | | performing | . | resource |QoS rsrc granted | QoS | <....+ | |<-----------------| reservation | +-------------+ +--------------+ Figure 5: Scheme for Push Mode3.4. QoS Application Requirements
A QoS application must meet a number of requirements applicable to a diverse set of networking environments and services. It should be compatible with different deployment scenarios having specific QoS signaling models and security issues. Satisfying the requirements listed below while interworking with QoS signaling protocols, a Diameter QoS application should accommodate the capabilities of the QoS signaling protocols rather than introduce functional requirements on them. A list of requirements for a QoS authorization application is provided here:
Identity-based Routing
The Diameter QoS application MUST route AAA requests to the
Authorizing Entity, based on the provided identity of the QoS
requesting entity or the identity of the AE encoded in the
provided authorization token.
Flexible Authentication Support
The Diameter QoS application MUST support a variety of different
authentication protocols for verification of authentication
information present in QoS signaling messages. The support for
these protocols MAY be provided indirectly by tying the signaling
communication for QoS to a previous authentication protocol
exchange (e.g., using network access authentication).
Making an Authorization Decision
The Diameter QoS application MUST exchange sufficient information
between the AE and the enforcing entity (and vice versa) to
compute an authorization decision and to execute this decision.
Triggering an Authorization Process
The Diameter QoS application MUST allow periodic and event-
triggered execution of the authorization process, originated at
the enforcing entity or even at the AE.
Associating QoS Reservations and Application State
The Diameter QoS application MUST carry information sufficient for
an AppS to identify the appropriate application session and
associate it with a particular QoS reservation.
Dynamic Authorization
It MUST be possible for the Diameter QoS application to push
updates towards the NE(s) from Authorizing Entities.
Bearer Gating
The Diameter QoS application MUST allow the AE to gate (i.e.,
enable/disable) authorized application flows based on, e.g.,
application state transitions.
Accounting Records
The Diameter QoS application MAY define QoS accounting records
containing duration, volume (byte count) usage information, and a
description of the QoS attributes (e.g., bandwidth, delay, loss
rate) that were supported for the flow.
Sending Accounting Records
The NE SHOULD be able to send accounting records for a particular
QoS reservation state to an accounting entity.
Failure Notification
The Diameter QoS application MUST allow the NE to report failures,
such as loss of connectivity due to movement of a mobile node or
other reasons for packet loss, to the Authorizing Entity.
Accounting Correlation
The Diameter QoS application MAY support the exchange of
sufficient information to allow for correlation between accounting
records generated by the NEs and accounting records generated by
an AppS.
Interaction with Other AAA Applications
Interaction with other AAA applications, such as the Diameter
Network Access Server Application [RFC4005], may be required for
exchange of authorization, authentication, and accounting
information.
In deployment scenarios where authentication of the QoS reservation
requesting entity (e.g., the user) is done by means outside the
Diameter QoS application protocol interaction, the AE is contacted
only with a request for QoS authorization. Authentication might have
taken place already via the interaction with the Diameter application
[RFC4005] or as part of the QoS signaling protocol (e.g., Transport
Layer Security (TLS) [RFC5246] in the General Internet Signaling
Transport (GIST) protocol [NSIS-NTLP]).
Authentication of the QoS reservation requesting entity to the AE is
necessary if a particular Diameter QoS application protocol cannot be
related (or if there is no intention to relate it) to a prior
authentication. In this case, the AE MUST authenticate the QoS
reservation requesting entity in order to authorize the QoS request
as part of the Diameter QoS protocol interaction.
This document refers to three types of sessions that need to be
properly correlated.
QoS Signaling Session
The time period during which a QoS signaling protocol establishes,
maintains, and deletes a QoS reservation state at the QoS network
element is referred to as a QoS signaling session. Different QoS
signaling protocols use different ways to identify QoS signaling
sessions. The same applies to different usage environments.
Currently, this document supports three types of QoS session
identifiers, namely a signaling session id (e.g., the Session
Identifier used by the NSIS protocol suite), a flow id (e.g.,
identifier assigned by an application to a certain flow as used in
the 3GPP), and a flow description based on the IP parameters of
the flow's endpoints.
Diameter Authorization Session
The time period for which a Diameter server authorizes a requested
service (i.e., QoS resource reservation) is referred to as a
Diameter authorization session. It is identified by a Session-Id
included in all Diameter messages used for management of the
authorized service (initial authorization, re-authorization,
termination), see [RFC3588].
Application-Layer Session
The application-layer session identifies the duration of an
application-layer service that requires provision of a certain
QoS. An application-layer session identifier is provided by the
QoS requesting entity in the QoS signaling messages, for example
as part of the authorization token. In general, the application
session identifier is opaque to the QoS-aware NEs. It is included
in the authorization request message sent to the AE and helps it
to correlate the QoS authorization request to the application
session state information.
Correlating these sessions is done at each of the three involved
entities: The QoS requesting entity correlates the application with
the QoS signaling sessions. The QoS NE correlates the QoS signaling
session with the Diameter authorization sessions. The AE SHOULD bind
the information about the three sessions together. Note that in
certain scenarios, not all of the sessions are present. For example,
the application session might not be visible to the QoS signaling
protocol directly if there is no binding between the application
session and the QoS requesting entity using the QoS signaling
protocol.