Tech-invite3GPPspaceIETFspace
959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 3971

SEcure Neighbor Discovery (SEND)

Pages: 56
Proposed Standard
Errata
Updated by:  649464956980
Part 2 of 2 – Pages 24 to 56
First   Prev   None

Top   ToC   RFC3971 - Page 24   prevText

6. Authorization Delegation Discovery

NDP allows a node to configure itself automatically based on information learned shortly after connecting to a new link. It is particularly easy to configure "rogue" routers on an unsecured link, and it is particularly difficult for a node to distinguish between valid and invalid sources of router information, because the node needs this information before communicating with nodes outside of the link. As the newly-connected node cannot communicate off-link, it cannot be responsible for searching information to help validate the router(s). However, given a certification path, the node can check someone else's search results and conclude that a particular message comes from an authorized source. In the typical case, a router already connected beyond the link can communicate if necessary with off-link nodes and construct a certification path. The Secure Neighbor Discovery Protocol mandates a certificate format and introduces two new ICMPv6 messages used between hosts and routers to allow the host to learn a certification path with the assistance of the router.

6.1. Authorization Model

To protect Router Discovery, SEND requires that routers be authorized to act as routers. This authorization is provisioned in both routers and hosts. Routers are given certificates from a trust anchor, and the hosts are configured with the trust anchor(s) to authorize routers. This provisioning is specific to SEND and does not assume that certificates already deployed for some other purpose can be used. The authorization for routers in SEND is twofold: o Routers are authorized to act as routers. The router belongs to the set of routers trusted by the trust anchor. All routers in this set have the same authorization. o Optionally, routers may also be authorized to advertise a certain set of subnet prefixes. A specific router is given a specific set of subnet prefixes to advertise; other routers have an authorization to advertise other subnet prefixes. Trust anchors may also delegate a certain set of subnet prefixes to someone (such as an ISP) who, in turn, delegates parts of this set to individual routers.
Top   ToC   RFC3971 - Page 25
   Note that while communicating with hosts, routers typically also
   present a number of other parameters beyond the above.  For instance,
   routers have their own IP addresses, subnet prefixes have lifetimes,
   and routers control the use of stateless and stateful address
   autoconfiguration.  However, the ability to be a router and the
   subnet prefixes are the most fundamental parameters to authorize.
   This is because the host needs to choose a router that it uses as its
   default router, and because the advertised subnet prefixes have an
   impact on the addresses the host uses.  The subnet prefixes also
   represent a claim about the topological location of the router in the
   network.

   Care should be taken if the certificates used in SEND are also used
   to provide authorization in other circumstances; for example, with
   routing protocols.  It is necessary to ensure that the authorization
   information is appropriate for all applications.  SEND certificates
   may authorize a larger set of subnet prefixes than the router is
   authorized to advertise on a given interface.  For instance, SEND
   allows the use of the null prefix, which might cause verification or
   routing problems in other applications.  It is RECOMMENDED that SEND
   certificates containing the null prefix are only used for SEND.

   Note that end hosts need not be provisioned with their own certified
   public keys, just as Web clients today do not require end host
   provisioning with certified keys.  Public keys for CGA generation do
   not need to be certified, as these keys derive their ability to
   authorize operations on the CGA by the tie to the address.

6.2. Deployment Model

The deployment model for trust anchors can be either a globally rooted public key infrastructure or a more local, decentralized deployment model similar to that currently used for TLS in Web servers. The centralized model assumes a global root capable of authorizing routers and, optionally, the address space they advertise. The end hosts are configured with the public keys of the global root. The global root could operate, for instance, under the Internet Assigned Numbers Authority (IANA) or as a co-operative among Regional Internet Registries (RIRs). However, no such global root currently exists. In the decentralized model, end hosts are configured with a collection of trusted public keys. The public keys could be issued from various places; for example, a) a public key for the end host's own organization, b) a public key for the end host's home ISP and for ISPs with which the home ISP has a roaming agreement, or c) public keys for roaming brokers acting as intermediaries for ISPs that don't want to run their own certification authority.
Top   ToC   RFC3971 - Page 26
   This decentralized model works even when a SEND node is used both in
   networks that have certified routers and in networks that do not.  As
   discussed in Section 8, a SEND node can fall back to the use of a
   non-SEND router.  This makes it possible to start with a local trust
   anchor even if there is no trust anchor for all possible networks.

6.3. Certificate Format

The certification path of a router terminates in a Router Authorization Certificate that authorizes a specific IPv6 node to act as a router. Because authorization paths are not a common practice in the Internet at the time of this writing, the path MUST consist of standard Public Key Certificates (PKC, in the sense of [8]). The certification path MUST start from the identity of a trust anchor shared by the host and the router. This allows the host to anchor trust for the router's public key in the trust anchor. Note that there MAY be multiple certificates issued by a single trust anchor.

6.3.1. Router Authorization Certificate Profile

Router Authorization Certificates are X.509v3 certificates, as defined in RFC 3280 [7], and SHOULD contain at least one instance of the X.509 extension for IP addresses, as defined in [10]. The parent certificates in the certification path SHOULD contain one or more X.509 IP address extensions, back up to a trusted party (such as the user's ISP) that configured the original IP address block for the router in question, or that delegated the right to do so. The certificates for the intermediate delegating authorities SHOULD contain X.509 IP address extension(s) for subdelegations. The router's certificate is signed by the delegating authority for the subnet prefixes the router is authorized to advertise. The X.509 IP address extension MUST contain at least one addressesOrRanges element. This element MUST contain an addressPrefix element containing an IPv6 address prefix for a prefix that the router or the intermediate entity is authorized to route. If the entity is allowed to route any prefix, the IPv6 address prefix used is the null prefix, ::/0. The addressFamily element of the IPAddrBlocks sequence element MUST contain the IPv6 Address Family Identifier (0002), as specified in [10], for IPv6 subnet prefixes. Instead of an addressPrefix element, the addressesOrRange element MAY contain an addressRange element for a range of subnet prefixes, if more than one prefix is authorized. The X.509 IP address extension MAY contain additional IPv6 subnet prefixes, expressed as either an addressPrefix or an addressRange.
Top   ToC   RFC3971 - Page 27
   A node receiving a Router Authorization Certificate MUST first check
   whether the certificate's signature was generated by the delegating
   authority.  Then the client SHOULD check whether all the
   addressPrefix or addressRange entries in the router's certificate are
   contained within the address ranges in the delegating authority's
   certificate, and whether the addressPrefix entries match any
   addressPrefix entries in the delegating authority's certificate.  If
   an addressPrefix or addressRange is not contained within the
   delegating authority's subnet prefixes or ranges, the client MAY
   attempt to take an intersection of the ranges/subnet prefixes and to
   use that intersection.  If the resulting intersection is empty, the
   client MUST NOT accept the certificate.  If the addressPrefix in the
   certificate is missing or is the null prefix, ::/0, the parent prefix
   or range SHOULD be used.  If there is no parent prefix or range, the
   subnet prefixes that the router advertises are said to be
   unconstrained (see Section 7.3).  That is, the router is allowed to
   advertise any prefix.

   The above checks SHOULD be done for all certificates in the path.  If
   any of the checks fail, the client MUST NOT accept the certificate.
   The client also has to perform validation of advertised subnet
   prefixes as discussed in Section 7.3.

   Hosts MUST check the subjectPublicKeyInfo field within the last
   certificate in the certificate path to ensure that only RSA public
   keys are used to attempt validation of router signatures.  Hosts MUST
   disregard the certificate for SEND if it does not contain an RSA key.

   As it is possible that some public key certificates used with SEND do
   not immediately contain the X.509 IP address extension element, an
   implementation MAY contain facilities that allow the prefix and range
   checks to be relaxed.  However, any such configuration options SHOULD
   be switched off by default.  The system SHOULD have a default
   configuration that requires rigorous prefix and range checks.

   The following is an example of a certification path.  Suppose that
   isp_group_example.net is the trust anchor.  The host has this
   certificate:

      Certificate 1:
        Issuer: isp_group_example.net
        Validity: Jan 1, 2004 through Dec 31, 2004
        Subject: isp_group_example.net
        Extensions:
          IP address delegation extension:
             Prefixes: P1, ..., Pk
          ... possibly other extensions ...
        ... other certificate parameters ...
Top   ToC   RFC3971 - Page 28
   When the host attaches to a link served by
   router_x.isp_foo_example.net, it receives the following certification
   path:

      Certificate 2:
        Issuer: isp_group_example.net
        Validity: Jan 1, 2004 through Dec 31, 2004
        Subject: isp_foo_example.net
        Extensions:
          IP address delegation extension:
            Prefixes: Q1, ..., Qk
          ... possibly other extensions ...
        ... other certificate parameters ...

      Certificate 3:
        Issuer: isp_foo_example.net
        Validity: Jan 1, 2004 through Dec 31, 2004
        Subject: router_x.isp_foo_example.net
        Extensions:
          IP address delegation extension:
            Prefixes R1, ..., Rk
          ... possibly other extensions ...

        ... other certificate parameters ...

   When the three certificates are processed, the usual RFC 3280 [7]
   certificate path validation is performed.  Note, however, that when a
   node checks certificates received from a router, it typically does
   not have a connection to the Internet yet, and so it is not possible
   to perform an on-line Certificate Revocation List (CRL) check, if
   necessary.  Until this check is performed, acceptance of the
   certificate MUST be considered provisional, and the node MUST perform
   a check as soon as it has established a connection with the Internet
   through the router.  If the router has been compromised, it could
   interfere with the CRL check.  Should performance of the CRL check be
   disrupted or should the check fail, the node SHOULD immediately stop
   using the router as a default and use another router on the link
   instead.

   In addition, the IP addresses in the delegation extension MUST be a
   subset of the IP addresses in the delegation extension of the
   issuer's certificate.  So in this example, R1, ..., Rs must be a
   subset of Q1,...,Qr, and Q1,...,Qr must be a subset of P1,...,Pk.  If
   the certification path is valid, then router_foo.isp_foo_example.com
   is authorized to route the prefixes R1,...,Rs.
Top   ToC   RFC3971 - Page 29

6.3.2. Suitability of Standard Identity Certificates

As deployment of the IP address extension is, itself, not common, a network service provider MAY choose to deploy standard identity certificates on the router to supply the router's public key for signed Router Advertisements. If there is no prefix information further up in the certification path, a host interprets a standard identity certificate as allowing unconstrained prefix advertisements. If the other certificates contain prefix information, a standard identity certificate is interpreted as allowing those subnet prefixes.

6.4. Certificate Transport

The Certification Path Solicitation (CPS) message is sent by a host when it wishes to request a certification path between a router and one of the host's trust anchors. The Certification Path Advertisement (CPA) message is sent in reply to the CPS message. These messages are kept separate from the rest of Neighbor and Router Discovery to reduce the effect of the potentially voluminous certification path information on other messages. The Authorization Delegation Discovery (ADD) process does not exclude other forms of discovering certification paths. For instance, during fast movements, mobile nodes may learn information (including the certification paths) about the next router from a previous router, or nodes may be preconfigured with certification paths from roaming partners. Where hosts themselves are certified by a trust anchor, these messages MAY also optionally be used between hosts to acquire the peer's certification path. However, the details of such usage are beyond the scope of this specification.
Top   ToC   RFC3971 - Page 30

6.4.1. Certification Path Solicitation Message Format

Hosts send Certification Path Solicitations in order to prompt routers to generate Certification Path Advertisements. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Code | Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Identifier | Component | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Options ... +-+-+-+-+-+-+-+-+-+-+-+- IP Fields: Source Address A link-local unicast address assigned to the sending interface, or to the unspecified address if no address is assigned to the sending interface. Destination Address Typically the All-Routers multicast address, the Solicited-Node multicast address, or the address of the host's default router. Hop Limit 255 ICMP Fields: Type 148 Code 0 Checksum The ICMP checksum [6].
Top   ToC   RFC3971 - Page 31
      Identifier

         A 16-bit unsigned integer field, acting as an identifier to
         help match advertisements to solicitations.  The Identifier
         field MUST NOT be zero, and its value SHOULD be randomly
         generated.  This randomness does not have to be
         cryptographically hard, as its purpose is only to avoid
         collisions.

      Component

         This 16-bit unsigned integer field is set to 65,535 if the
         sender seeks to retrieve all certificates.  Otherwise, it is
         set to the component identifier corresponding to the
         certificate that the receiver wants to retrieve (see Sections
         6.4.2 and 6.4.6).

   Valid Options:

      Trust Anchor

         One or more trust anchors that the client is willing to accept.
         The first (or only) Trust Anchor option MUST contain a DER
         Encoded X.501 Name; see Section 6.4.3.  If there is more than
         one Trust Anchor option, the options beyond the first may
         contain any type of trust anchor.

      Future versions of this protocol may define new option types.
      Receivers MUST silently ignore any options they do not recognize
      and continue processing the message.  All included options MUST
      have a length greater than zero.

      ICMP length (derived from the IP length) MUST be 8 or more octets.
Top   ToC   RFC3971 - Page 32

6.4.2. Certification Path Advertisement Message Format

Routers send out Certification Path Advertisement messages in response to a Certification Path Solicitation. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Code | Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Identifier | All Components | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Component | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Options ... +-+-+-+-+-+-+-+-+-+-+-+- IP Fields: Source Address A link-local unicast address assigned to the interface from which this message is sent. Note that routers may use multiple addresses, and therefore this address is not sufficient for the unique identification of routers. Destination Address Either the Solicited-Node multicast address of the receiver or the link-scoped All-Nodes multicast address. Hop Limit 255 ICMP Fields: Type 149 Code 0 Checksum The ICMP checksum [6].
Top   ToC   RFC3971 - Page 33
      Identifier

         A 16-bit unsigned integer field, acting as an identifier to
         help match advertisements to solicitations.  The Identifier
         field MUST be zero for advertisements sent to the All-Nodes
         multicast address and MUST NOT be zero for others.

      All Components

         A 16-bit unsigned integer field, used to inform the receiver of
         the number of certificates in the entire path.

         A single advertisement SHOULD be broken into separately sent
         components if there is more than one certificate in the path,
         in order to avoid excessive fragmentation at the IP layer.

         Individual certificates in a path MAY be stored and used as
         received before all the certificates have arrived; this makes
         the protocol slightly more reliable and less prone to Denial-
         of-Service attacks.

         Examples of packet lengths of Certification Path Advertisement
         messages for typical certification paths are listed in Appendix
         C.

      Component

         A 16-bit unsigned integer field, used to inform the receiver
         which certificate is being sent.

         The first message in an N-component advertisement has the
         Component field set to N-1, the second set to N-2, and so on.
         A zero indicates that there are no more components coming in
         this advertisement.

         The sending of path components SHOULD be ordered so that the
         certificate after the trust anchor is sent first.  Each
         certificate sent after the first can be verified with the
         previously sent certificates.  The certificate of the sender
         comes last.  The trust anchor certificate SHOULD NOT be sent.

      Reserved

         An unused field.  It MUST be initialized to zero by the sender
         and MUST be ignored by the receiver.
Top   ToC   RFC3971 - Page 34
   Valid Options:

      Certificate

         One certificate is provided in each Certificate option to
         establish part of a certification path to a trust anchor.

         The certificate of the trust anchor itself SHOULD NOT be sent.

      Trust Anchor

         Zero or more Trust Anchor options may be included to help
         receivers decide which advertisements are useful for them.  If
         present, these options MUST appear in the first component of a
         multi-component advertisement.

      Future versions of this protocol may define new option types.
      Receivers MUST silently ignore any options they do not recognize
      and continue processing the message.  All included options MUST
      have a length that is greater than zero.

      The ICMP length (derived from the IP length) MUST be 8 or more
      octets.

6.4.3. Trust Anchor Option

The format of the Trust Anchor option is described in the following: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | Name Type | Pad Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Name ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... Padding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Type 15 Length The length of the option (including the Type, Length, Name Type, Pad Length, and Name fields), in units of 8 octets.
Top   ToC   RFC3971 - Page 35
   Name Type

      The type of the name included in the Name field.  This
      specification defines two legal values for this field:

            1        DER Encoded X.501 Name
            2        FQDN

   Pad Length

      The number of padding octets beyond the end of the Name field but
      within the length specified by the Length field.  Padding octets
      MUST be set to zero by senders and ignored by receivers.

   Name

      When the Name Type field is set to 1, the Name field contains a
      DER encoded X.501 Name identifying the trust anchor.  The value is
      encoded as defined in [12] and [7].

      When the Name Type field is set to 2, the Name field contains a
      Fully Qualified Domain Name of the trust anchor; for example,
      "trustanchor.example.com".  The name is stored as a string, in the
      DNS wire format, as specified in RFC 1034 [1].  Additionally, the
      restrictions discussed in RFC 3280 [7], Section 4.2.1.7 apply.

      In the FQDN case, the Name field is an "IDN-unaware domain name
      slot", as defined in [9].  That is, it can contain only ASCII
      characters.  An implementation MAY support internationalized
      domain names (IDNs) using the ToASCII operation; see [9] for more
      information.

      All systems MUST support the DER Encoded X.501 Name.
      Implementations MAY support the FQDN name type.

   Padding

      A variable-length field making the option length a multiple of 8,
      beginning after the previous field ends and continuing to the end
      of the option, as specified by the Length field.
Top   ToC   RFC3971 - Page 36

6.4.4. Certificate Option

The format of the certificate option is described in the following: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | Cert Type | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Certificate ... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... Padding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Type 16 Length The length of the option (including the Type, Length, Cert Type, Pad Length, and Certificate fields), in units of 8 octets. Cert Type The type of the certificate included in the Certificate field. This specification defines only one legal value for this field: 1 X.509v3 Certificate, as specified below Reserved An 8-bit field reserved for future use. The value MUST be initialized to zero by the sender and MUST be ignored by the receiver. Certificate When the Cert Type field is set to 1, the Certificate field contains an X.509v3 certificate [7], as described in Section 6.3.1. Padding A variable length field making the option length a multiple of 8, beginning after the ASN.1 encoding of the previous field [7, 15] ends and continuing to the end of the option, as specified by the Length field.
Top   ToC   RFC3971 - Page 37

6.4.5. Processing Rules for Routers

A router MUST silently discard any received Certification Path Solicitation messages that do not conform to the message format defined in Section 6.4.1. The contents of the Reserved field and of any unrecognized options MUST be ignored. Future, backward- compatible changes to the protocol may specify the contents of the Reserved field or add new options; backward-incompatible changes may use different Code values. The contents of any defined options that are not specified to be used with Router Solicitation messages MUST be ignored, and the packet processed in the normal manner. The only defined option that may appear is the Trust Anchor option. A solicitation that passes the validity checks is called a "valid solicitation". Routers SHOULD send advertisements in response to valid solicitations received on an advertising interface. If the source address in the solicitation was the unspecified address, the router MUST send the response to the link-scoped All-Nodes multicast address. If the source address was a unicast address, the router MUST send the response to the Solicited-Node multicast address corresponding to the source address, except when under load, as specified below. Routers SHOULD NOT send Certification Path Advertisements more than MAX_CPA_RATE times within a second. When there are more solicitations, the router SHOULD send the response to the All-Nodes multicast address regardless of the source address that appeared in the solicitation. In an advertisement, the router SHOULD include suitable Certificate options so that a certification path can be established to the solicited trust anchor (or a part of it, if the Component field in the solicitation is not equal to 65,535). Note also that a single advertisement is broken into separately sent components and ordered in a particular way (see Section 6.4.2) when there is more than one certificate in the path. The anchor is identified by the Trust Anchor option. If the Trust Anchor option is represented as a DER Encoded X.501 Name, then the Name must be equal to the Subject field in the anchor's certificate. If the Trust Anchor option is represented as an FQDN, the FQDN must be equal to an FQDN in the subjectAltName field of the anchor's certificate. The router SHOULD include the Trust Anchor option(s) in the advertisement for which the certification path was found. If the router is unable to find a path to the requested anchor, it SHOULD send an advertisement without any certificates. In this case, the router SHOULD include the Trust Anchor options that were solicited.
Top   ToC   RFC3971 - Page 38

6.4.6. Processing Rules for Hosts

A host MUST silently discard any received Certification Path Advertisement messages that do not conform to the message format defined in Section 6.4.2. The contents of the Reserved field, and of any unrecognized options, MUST be ignored. Future, backward- compatible changes to the protocol MAY specify the contents of the Reserved field or add new options; backward-incompatible changes MUST use different Code values. The contents of any defined options not specified to be used with Certification Path Advertisement messages MUST be ignored, and the packet processed in the normal manner. The only defined options that may appear are the Certificate and Trust Anchor options. An advertisement that passes the validity checks is called a "valid advertisement". Hosts SHOULD store certification paths retrieved in Certification Path Discovery messages if they start from an anchor trusted by the host. The certification paths MUST be verified, as defined in Section 6.3, before storing them. Routers send the certificates one by one, starting from the trust anchor end of the path. Note: Except to allow for message loss and reordering for temporary purposes, hosts might not store certificates received in a Certification Path Advertisement unless they contain a certificate that can be immediately verified either to the trust anchor or to a certificate that has been verified earlier. This measure is intended to prevent Denial-of-Service attacks, whereby an attacker floods a host with certificates that the host cannot validate and overwhelms memory for certificate storage. Note that caching this information, and the implied verification results between network attachments for use over multiple attachments to the network, can help improve performance. But periodic certificate revocation checks are still needed, even with cached results, to make sure that the certificates are still valid. The host SHOULD retrieve a certification path when a Router Advertisement has been received with a public key that is not available from a certificate in the hosts' cache, or when there is no certification path to one of the host's trust anchors. In these situations, the host MAY send a Certification Path Solicitation message to retrieve the path. If there is no response within CPS_RETRY seconds, the message should be retried. The wait interval for each subsequent retransmission MUST exponentially increase, doubling each time. If there is no response after CPS_RETRY_MAX seconds, the host abandons the certification path retrieval process. If the host receives only a part of a certification path within CPS_RETRY_FRAGMENTS seconds of receiving the first part, it MAY in
Top   ToC   RFC3971 - Page 39
   addition transmit a Certification Path Solicitation message with the
   Component field set to a value not equal to 65,535.  This message can
   be retransmitted by using the same process as for the initial
   message.  If there are multiple missing certificates, additional CPS
   messages can be sent after getting a response to first one.  However,
   the complete retrieval process may last at most CPS_RETRY_MAX
   seconds.

   Certification Path Solicitations SHOULD NOT be sent if the host has a
   currently valid certification path from a reachable router to a trust
   anchor.

   When soliciting certificates for a router, a host MUST send
   Certification Path Solicitations either to the All-Routers multicast
   address, if it has not selected a default router yet, or to the
   default router's IP address, if a default router has already been
   selected.

   If two hosts want to establish trust with the CPS and CPA messages,
   the CPS message SHOULD be sent to the Solicited-Node multicast
   address of the receiver.  The advertisements SHOULD be sent as
   specified above for routers.  However, the exact details are outside
   the scope of this specification.

   When processing possible advertisements sent as responses to a
   solicitation, the host MAY prefer to process those advertisements
   with the same Identifier field value as that of the solicitation
   first.  This makes Denial-of-Service attacks against the mechanism
   harder (see Section 9.3).

6.5. Configuration

End hosts are configured with a set of trust anchors in order to protect Router Discovery. A trust anchor configuration consists of the following items: o A public key signature algorithm and associated public key, which may optionally include parameters. o A name as described in Section 6.4.3. o An optional public key identifier. o An optional list of address ranges for which the trust anchor is authorized. If the host has been configured to use SEND, it SHOULD possess the above information for at least one trust anchor.
Top   ToC   RFC3971 - Page 40
   Routers are configured with a collection of certification paths and a
   collection of certificates containing certified keys, down to the key
   and certificate for the router itself.  Certified keys are required
   for routers so that a certification path can be established between
   the router's certificate and the public key of a trust anchor.

   If the router has been configured to use SEND, it should be
   configured with its own key pair and certificate, and with at least
   one certification path.

7. Addressing

7.1. CGAs

By default, a SEND-enabled node SHOULD use only CGAs for its own addresses. Other types of addresses MAY be used in testing, in diagnostics, or for other purposes. However, this document does not describe how to choose between different types of addresses for different communications. A dynamic selection can be provided by an API, such as the one defined in [21].

7.2. Redirect Addresses

If the Target Address and Destination Address fields in the ICMP Redirect message are equal, then this message is used to inform hosts that a destination is, in fact, a neighbor. In this case, the receiver MUST verify that the given address falls within the range defined by the router's certificate. Redirect messages failing this check MUST be treated as unsecured, as described in Section 7.3. Note that base NDP rules prevent a host from accepting a Redirect message from a router that the host is not using to reach the destination mentioned in the redirect. This prevents an attacker from tricking a node into redirecting traffic when the attacker is not the default router.

7.3. Advertised Subnet Prefixes

The router's certificate defines the address range(s) that it is allowed to advertise securely. A router MAY, however, advertise a combination of certified and uncertified subnet prefixes. Uncertified subnet prefixes are treated as unsecured (i.e., processed in the same way as unsecured router advertisements sent by non-SEND routers). The processing of unsecured messages is specified in Section 8. Note that SEND nodes that do not attempt to interoperate with non-SEND nodes MAY simply discard the unsecured information.
Top   ToC   RFC3971 - Page 41
   Certified subnet prefixes fall into the following two categories:

   Constrained

      If the network operator wants to constrain which routers are
      allowed to route particular subnet prefixes, routers should be
      configured with certificates having subnet prefixes listed in the
      prefix extension.  These routers SHOULD advertise the subnet
      prefixes that they are certified to route, or a subset thereof.

   Unconstrained

      Network operators that do not want to constrain routers this way
      should configure routers with certificates containing either the
      null prefix or no prefix extension at all.

   Upon processing a Prefix Information option within a Router
   Advertisement, nodes SHOULD verify that the prefix specified in this
   option falls within the range defined by the certificate, if the
   certificate contains a prefix extension.  Options failing this check
   are treated as containing uncertified subnet prefixes.

   Nodes SHOULD use one of the certified subnet prefixes for stateless
   autoconfiguration.  If none of the advertised subnet prefixes match,
   the host SHOULD use a different advertising router as its default
   router, if one is available.  If the node is performing stateful
   autoconfiguration, it SHOULD check the address provided by the DHCP
   server against the certified subnet prefixes and SHOULD NOT use the
   address if the prefix is not certified.

7.4. Limitations

This specification does not address the protection of NDP packets for nodes configured with a static address (e.g., PREFIX::1). Future certification path-based authorization specifications are needed for these nodes. This specification also does not apply to addresses generated by the IPv6 stateless address autoconfiguration from a fixed interface identifiers (such as EUI-64). It is outside the scope of this specification to describe the use of trust anchor authorization between nodes with dynamically changing addresses. These addresses may be the result of stateful or stateless address autoconfiguration, or may have resulted from the use of RFC 3041 [17] addresses. If the CGA method is not used, nodes are required to exchange certification paths that terminate in a certificate authorizing a node to use an IP address having a particular interface identifier. This specification does not specify the format of these certificates, as there are currently only a few
Top   ToC   RFC3971 - Page 42
   cases where they are provided by the link layer, and it is up to the
   link layer to provide certification for the interface identifier.
   This may be the subject of a future specification.  It is also
   outside the scope of this specification to describe how stateful
   address autoconfiguration works with the CGA method.

   The Target Address in Neighbor Advertisement is required to be equal
   to the source address of the packet, except in proxy Neighbor
   Discovery, which is not supported by this specification.

8. Transition Issues

During the transition to secured links, or as a policy consideration, network operators may want to run a particular link with a mixture of nodes accepting secured and unsecured messages. Nodes that support SEND SHOULD support the use of secured and unsecured NDP messages at the same time. In a mixed environment, SEND nodes receive both secured and unsecured messages but give priority to secured ones. Here, the "secured" messages are those that contain a valid signature option, as specified above, and "unsecured" messages are those that contain no signature option. A SEND node SHOULD have a configuration option that causes it to ignore all unsecured Neighbor Solicitation and Advertisement, Router Solicitation and Advertisement, and Redirect messages. This can be used to enforce SEND-only networks. The default for this configuration option SHOULD be that both secured and unsecured messages are allowed. A SEND node MAY also have a configuration option whereby it disables the use of SEND completely, even for the messages it sends itself. This configuration option SHOULD be switched off by default; that is, SEND is used. Plain (non-SEND) NDP nodes will obviously send only unsecured messages. Per RFC 2461 [4], such nodes will ignore the unknown options and will treat secured messages in the same way that they treat unsecured ones. Secured and unsecured nodes share the same network resources, such as subnet prefixes and address spaces. SEND nodes configured to use SEND at least in their own messages behave in a mixed environment as explained below. SEND adheres to the rules defined for the base NDP protocol, with the following exceptions: o All solicitations sent by a SEND node MUST be secured.
Top   ToC   RFC3971 - Page 43
   o  Unsolicited advertisements sent by a SEND node MUST be secured.

   o  A SEND node MUST send a secured advertisement in response to a
      secured solicitation.  Advertisements sent in response to an
      unsecured solicitation MUST be secured as well, but MUST NOT
      contain the Nonce option.

   o  A SEND node that uses the CGA authorization method to protect
      Neighbor Solicitations SHOULD perform Duplicate Address Detection
      as follows.  If Duplicate Address Detection indicates that the
      tentative address is already in use, the node generates a new
      tentative CGA.  If after three consecutive attempts no non-unique
      address is generated, it logs a system error and gives up
      attempting to generate an address for that interface.

      When performing Duplicate Address Detection for the first
      tentative address, the node accepts both secured and unsecured
      Neighbor Advertisements and Solicitations received in response to
      the Neighbor Solicitations.  When performing Duplicate Address
      Detection for the second or third tentative address, it ignores
      unsecured Neighbor Advertisements and Solicitations.  (The
      security implications of this are discussed in Section 9.2.3 and
      in [11].)

   o  The node MAY have a configuration option whereby it ignores
      unsecured advertisements, even when performing Duplicate Address
      Detection for the first tentative address.  This configuration
      option SHOULD be disabled by default.  This is a recovery
      mechanism for cases in which attacks against the first address
      become common.

   o  The Neighbor Cache, Prefix List, and Default Router list entries
      MUST have a secured/unsecured flag that indicates whether the
      message that caused the creation or last update of the entry was
      secured or unsecured.  Received unsecured messages MUST NOT cause
      changes to existing secured entries in the Neighbor Cache, Prefix
      List, or Default Router List.  Received secured messages MUST
      cause an update of the matching entries, which MUST be flagged as
      secured.

   o  Neighbor Solicitations for the purpose of Neighbor Unreachability
      Detection (NUD) MUST be sent to that neighbor's solicited-nodes
      multicast address if the entry is not secured with SEND.

      Upper layer confirmations on unsecured neighbor cache entries
      SHOULD NOT update neighbor cache state from STALE to REACHABLE on
      a SEND node if the neighbor cache entry has never previously been
      REACHABLE.  This ensures that if an entry spoofing a valid SEND
Top   ToC   RFC3971 - Page 44
      host is created by a non-SEND attacker without being solicited,
      NUD will be done with the entry for data transmission within five
      seconds of use.

      As a result, in mixed mode, attackers can take over a Neighbor
      Cache entry of a SEND node for a longer time only if (a) the SEND
      node was not communicating with the victim node, so that there is
      no secure entry for it, and (b) the SEND node is not currently on
      the link (or is unable to respond).

   o  The conceptual sending algorithm is modified so that an unsecured
      router is selected only if there is no reachable SEND router for
      the prefix.  That is, the algorithm for selecting a default router
      favors reachable SEND routers over reachable non-SEND ones.

   o  A node MAY adopt a router sending unsecured messages, or a router
      for which secured messages have been received but for which full
      security checks have not yet been completed, while security
      checking is underway.  Security checks in this case include
      certification path solicitation, certificate verification, CRL
      checks, and RA signature checks.  A node MAY also adopt a router
      sending unsecured messages if a router known to be secured becomes
      unreachable, but because the unreachability may be the result of
      an attack it SHOULD attempt to find a router known to be secured
      as soon as possible.  Note that although this can speed up
      attachment to a new network, accepting a router that is sending
      unsecured messages or for which security checks are not complete
      opens the node to possible attacks.  Nodes that choose to accept
      such routers do so at their own risk.  The node SHOULD, in any
      case, prefer a router known to be secure as soon as one is made
      available with completed security checks.

9. Security Considerations

9.1. Threats to the Local Link Not Covered by SEND

SEND does not provide confidentiality for NDP communications. SEND does not compensate for an unsecured link layer. For instance, there is no assurance that payload packets actually come from the same peer against which the NDP was run. There may not be cryptographic binding in SEND between the link layer frame address and the IPv6 address. An unsecured link layer could allow nodes to spoof the link layer address of other nodes. An attacker could disrupt IP service by sending out a Neighbor Advertisement on an unsecured link layer, with the link layer source address on the frame set as the source address of a victim, a valid
Top   ToC   RFC3971 - Page 45
   CGA address and a valid signature corresponding to itself, and a
   Target Link-layer Address extension corresponding to the victim.  The
   attacker could then make a traffic stream bombard the victim in a DoS
   attack.  This cannot be prevented just by securing the link layer.

   Even on a secured link layer, SEND does not require that the
   addresses on the link layer and Neighbor Advertisements correspond.
   However, performing these checks is RECOMMENDED if the link layer
   technology permits.

   Prior to participating in Neighbor Discovery and Duplicate Address
   Detection, nodes must subscribe to the link-scoped All-Nodes
   Multicast Group and the Solicited-Node Multicast Group for the
   address that they are claiming as their addresses; RFC 2461 [4].
   Subscribing to a multicast group requires that the nodes use MLD
   [16].  MLD contains no provision for security.  An attacker could
   send an MLD Done message to unsubscribe a victim from the Solicited-
   Node Multicast address.  However, the victim should be able to detect
   this attack because the router sends a Multicast-Address-Specific
   Query to determine whether any listeners are still on the address, at
   which point the victim can respond to avoid being dropped from the
   group.  This technique will work if the router on the link has not
   been compromised.  Other attacks using MLD are possible, but they
   primarily lead to extraneous (but not necessarily overwhelming)
   traffic.

9.2. How SEND Counters Threats to NDP

The SEND protocol is designed to counter the threats to NDP, as outlined in [22]. The following subsections contain a regression of the SEND protocol against the threats, to illustrate which aspects of the protocol counter each threat.

9.2.1. Neighbor Solicitation/Advertisement Spoofing

This threat is defined in Section 4.1.1 of [22]. The threat is that a spoofed message may cause a false entry in a node's Neighbor Cache. There are two cases: 1. Entries made as a side effect of a Neighbor Solicitation or Router Solicitation. A router receiving a Router Solicitation with a Target Link-Layer Address extension and the IPv6 source address unequal to the unspecified address inserts an entry for the IPv6 address into its Neighbor Cache. Also, a node performing Duplicate Address Detection (DAD) that receives a Neighbor Solicitation for the same address regards the situation as a collision and ceases to solicit for the address.
Top   ToC   RFC3971 - Page 46
      In either case, SEND counters these threats by requiring that the
      RSA Signature and CGA options be present in these solicitations.

      SEND nodes can send Router Solicitation messages with a CGA source
      address and a CGA option, which the router can verify, so that the
      Neighbor Cache binding is correct.  If a SEND node must send a
      Router Solicitation with the unspecified address, the router will
      not update its Neighbor Cache, as per base NDP.

   2. Entries made as a result of a Neighbor Advertisement message.
      SEND counters this threat by requiring that the RSA Signature and
      CGA options be present in these advertisements.

   Also see Section 9.2.5, below, for discussion about replay protection
   and timestamps.

9.2.2. Neighbor Unreachability Detection Failure

This attack is described in Section 4.1.2 of [22]. SEND counters it by requiring that a node responding to Neighbor Solicitations sent as NUD probes include an RSA Signature option and proof of authorization to use the interface identifier in the address being probed. If these prerequisites are not met, the node performing NUD discards the responses.

9.2.3. Duplicate Address Detection DoS Attack

This attack is described in Section 4.1.3 of [22]. SEND counters this attack by requiring that the Neighbor Advertisements sent as responses to DAD include an RSA Signature option and proof of authorization to use the interface identifier in the address being tested. If these prerequisites are not met, the node performing DAD discards the responses. When a SEND node performs DAD, it may listen for address collisions from non-SEND nodes for the first address it generates, but not for new attempts. This protects the SEND node from DAD DoS attacks by non-SEND nodes or attackers simulating non-SEND nodes, at the cost of a potential address collision between a SEND node and a non-SEND node. The probability and effects of such an address collision are discussed in [11].

9.2.4. Router Solicitation and Advertisement Attacks

These attacks are described in Sections 4.2.1, 4.2.4, 4.2.5, 4.2.6, and 4.2.7 of [22]. SEND counters them by requiring that Router Advertisements contain an RSA Signature option, and that the signature is calculated by using the public key of a node that can
Top   ToC   RFC3971 - Page 47
   prove its authorization to route the subnet prefixes contained in any
   Prefix Information Options.  The router proves its authorization by
   showing a certificate containing the specific prefix or an indication
   that the router is allowed to route any prefix.  A Router
   Advertisement without these protections is discarded.

   SEND does not protect against brute force attacks on the router, such
   as DoS attacks, or against compromise of the router, as described in
   Sections 4.4.2 and 4.4.3 of [22].

9.2.5. Replay Attacks

This attack is described in Section 4.3.1 of [22]. SEND protects against attacks in Router Solicitation/Router Advertisement and Neighbor Solicitation/Neighbor Advertisement transactions by including a Nonce option in the solicitation and requiring that the advertisement include a matching option. Together with the signatures, this forms a challenge-response protocol. SEND protects against attacks from unsolicited messages such as Neighbor Advertisements, Router Advertisements, and Redirects by including a Timestamp option. The following security issues are relevant only for unsolicited messages: o A window of vulnerability for replay attacks exists until the timestamp expires. However, such vulnerabilities are only useful for attackers if the advertised parameters change during the window. Although some parameters (such as the remaining lifetime of a prefix) change often, radical changes typically happen only in the context of some special case, such as switching to a new link layer address due to a broken interface adapter. SEND nodes are also protected against replay attacks as long as they cache the state created by the message containing the timestamp. The cached state allows the node to protect itself against replayed messages. However, once the node flushes the state for whatever reason, an attacker can re-create the state by replaying an old message while the timestamp is still valid. Because most SEND nodes are likely to use fairly coarse-grained timestamps, as explained in Section 5.3.1, this may affect some nodes. o Attacks against time synchronization protocols such as NTP [23] may cause SEND nodes to have an incorrect timestamp value. This can be used to launch replay attacks, even outside the normal window of vulnerability. To protect against these attacks, it is
Top   ToC   RFC3971 - Page 48
      recommended that SEND nodes keep independently maintained clocks
      or apply suitable security measures for the time synchronization
      protocols.

9.2.6. Neighbor Discovery DoS Attack

This attack is described in Section 4.3.2 of [22]. In it, the attacker bombards the router with packets for fictitious addresses on the link, causing the router to busy itself by performing Neighbor Solicitations for addresses that do not exist. SEND does not address this threat because it can be addressed by techniques such as rate limiting Neighbor Solicitations, restricting the amount of state reserved for unresolved solicitations, and clever cache management. These are all techniques involved in implementing Neighbor Discovery on the router.

9.3. Attacks against SEND Itself

The CGAs have a 59-bit hash value. The security of the CGA mechanism has been discussed in [11]. Some Denial-of-Service attacks remain against NDP and SEND itself. For instance, an attacker may try to produce a very high number of packets that a victim host or router has to verify by using asymmetric methods. Although safeguards are required to prevent an excessive use of resources, this can still render SEND non- operational. When CGA protection is used, SEND deals with the DoS attacks by using the verification process described in Section 5.2.2. In this process, a simple hash verification of the CGA property of the address is performed before the more expensive signature verification. However, even if the CGA verification succeeds, no claims about the validity of the message can be made until the signature has been checked. When trust anchors and certificates are used for address validation in SEND, the defenses are not quite as effective. Implementations SHOULD track the resources devoted to the processing of packets received with the RSA Signature option and start selectively discarding packets if too many resources are spent. Implementations MAY also first discard packets that are not protected with CGA. The Authorization Delegation Discovery process may also be vulnerable to Denial-of-Service attacks. An attack may target a router by requesting that a large number of certification paths be discovered for different trust anchors. Routers SHOULD defend against such attacks by caching discovered information (including negative
Top   ToC   RFC3971 - Page 49
   responses) and by limiting the number of different discovery
   processes in which they engage.

   Attackers may also target hosts by sending a large number of
   unnecessary certification paths, forcing hosts to spend useless
   memory and verification resources on them.  Hosts can defend against
   such attacks by limiting the amount of resources devoted to the
   certification paths and their verification.  Hosts SHOULD also
   prioritize advertisements sent as a response to solicitations the
   hosts have sent about unsolicited advertisements.

10. Protocol Values

10.1. Constants

Host constants: CPS_RETRY 1 second CPS_RETRY_FRAGMENTS 2 seconds CPS_RETRY_MAX 15 seconds Router constants: MAX_CPA_RATE 10 times per second

10.2. Variables

TIMESTAMP_DELTA 300 seconds (5 minutes) TIMESTAMP_FUZZ 1 second TIMESTAMP_DRIFT 1 % (0.01)

11. IANA Considerations

This document defines two new ICMP message types, used in Authorization Delegation Discovery. These messages must be assigned ICMPv6 type numbers from the informational message range: o The Certification Path Solicitation message (148), described in Section 6.4.1. o The Certification Path Advertisement message (149), described in Section 6.4.2. This document defines six new Neighbor Discovery Protocol [4] options, which must be assigned Option Type values within the option numbering space for Neighbor Discovery Protocol messages: o The CGA option (11), described in Section 5.1.
Top   ToC   RFC3971 - Page 50
      o  The RSA Signature option (12), described in Section 5.2.

      o  The Timestamp option (13), described in Section 5.3.1.

      o  The Nonce option (14), described in Section 5.3.2.

      o  The Trust Anchor option (15), described in Section 6.4.3.

      o  The Certificate option (16), described in Section 6.4.4.

   This document defines a new 128-bit value under the CGA Message Type
   [11] namespace, 0x086F CA5E 10B2 00C9 9C8C E001 6427 7C08.

   This document defines a new name space for the Name Type field in the
   Trust Anchor option.  Future values of this field can be allocated by
   using Standards Action [3].  The current values for this field are

      1  DER Encoded X.501 Name

      2  FQDN

   Another new name space is allocated for the Cert Type field in the
   Certificate option.  Future values of this field can be allocated by
   using Standards Action [3].  The current values for this field are

      1  X.509v3 Certificate

12. References

12.1. Normative References

[1] Mockapetris, P., "Domain names - concepts and facilities", STD 13, RFC 1034, November 1987. [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [3] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 2434, October 1998. [4] Narten, T., Nordmark, E. and W. Simpson, "Neighbor Discovery for IP Version 6 (IPv6)", RFC 2461, December 1998. [5] Thomson, S. and T. Narten, "IPv6 Stateless Address Autoconfiguration", RFC 2462, December 1998.
Top   ToC   RFC3971 - Page 51
   [6]   Conta, A. and S. Deering, "Internet Control Message Protocol
         (ICMPv6) for the Internet Protocol Version 6 (IPv6)
         Specification", RFC 2463, December 1998.

   [7]  Housley, R., Polk, W., Ford, W. and D. Solo, "Internet X.509
         Public Key Infrastructure Certificate and Certificate
         Revocation List (CRL) Profile", RFC 3280, April 2002.

   [8]  Farrell, S. and R. Housley, "An Internet Attribute Certificate
         Profile for Authorization", RFC 3281, April 2002.

   [9]  Faltstrom, P., Hoffman, P. and A. Costello, "Internationalizing
         Domain Names in Applications (IDNA)", RFC 3490, March 2003.

   [10]  Lynn, C., Kent, S. and K. Seo, "X.509 Extensions for IP
         Addresses and AS Identifiers", RFC 3779, June 2004.

   [11]  Aura, T., "Cryptographically Generated Addresses (CGA)", RFC
         3972, March 2005.

   [12]  International Telecommunications Union, "Information Technology
         - ASN.1 encoding rules: Specification of Basic Encoding Rules
         (BER), Canonical Encoding Rules (CER) and Distinguished
         Encoding Rules (DER)", ITU-T Recommendation X.690, July 2002.

   [13]  RSA Laboratories, "RSA Encryption Standard, Version 2.1", PKCS
         1, November 2002.

   [14]  National Institute of Standards and Technology, "Secure Hash
         Standard", FIPS PUB 180-1, April 1995,
         <http://www.itl.nist.gov/fipspubs/fip180-1.htm>.

12.2. Informative References

[15] Harkins, D. and D. Carrel, "The Internet Key Exchange (IKE)", RFC 2409, November 1998. [16] Deering, S., Fenner, W. and B. Haberman, "Multicast Listener Discovery (MLD) for IPv6", RFC 2710, October 1999. [17] Narten, T. and R. Draves, "Privacy Extensions for Stateless Address Autoconfiguration in IPv6", RFC 3041, January 2001. [18] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C. and M. Carney, "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3315, July 2003.
Top   ToC   RFC3971 - Page 52
   [19]  Arkko, J., "Effects of ICMPv6 on IKE and IPsec Policies", Work
         in Progress, March 2003.

   [20]  Arkko, J., "Manual SA Configuration for IPv6 Link Local
         Messages", Work in Progress, June 2002.

   [21]  Nordmark, E., Chakrabarti, S. and J. Laganier, "IPv6 Socket API
         for Address Selection", Work in Progress, October 2003.

   [22]  Nikander, P., Kempf, J., and E. Nordmark, "IPv6 Neighbor
         Discovery (ND) Trust Models and Threats", RFC 3756, May 2004.

   [23]  Bishop, M., "A Security Analysis of the NTP Protocol", Sixth
         Annual Computer Security Conference Proceedings, December 1990.
Top   ToC   RFC3971 - Page 53

Appendix A. Contributors and Acknowledgments

Tuomas Aura contributed the transition mechanism specification in Section 8. Jonathan Trostle contributed the certification path example in Section 6.3.1. Bill Sommerfeld was involved with much of the early design work. The authors would also like to thank Tuomas Aura, Bill Sommerfeld, Erik Nordmark, Gabriel Montenegro, Pasi Eronen, Greg Daley, Jon Wood, Julien Laganier, Francis Dupont, Pekka Savola, Wenxiao He, Valtteri Niemi, Mike Roe, Russ Housley, Thomas Narten, and Steven Bellovin for interesting discussions in this problem space and for feedback regarding the SEND protocol.

Appendix B. Cache Management

In this section, we outline a cache management algorithm that allows a node to remain partially functional even under a cache-filling DoS attack. This appendix is informational, and real implementations SHOULD use different algorithms in order to avoid the dangers of a mono-cultural code. There are at least two distinct cache-related attack scenarios: 1. There are a number of nodes on a link, and someone launches a cache filling attack. The goal here is to make sure that the nodes can continue to communicate even if the attack is going on. 2. There is already a cache-filling attack going on, and a new node arrives to the link. The goal here is to make it possible for the new node to become attached to the network, in spite of the attack. As the intent is to limit the damage to existing, valid cache entries, it is clearly better to be very selective in throwing out entries. Reducing the timestamp Delta value is very discriminatory against nodes with a large clock difference, as an attacker can reduce its clock difference arbitrarily. Throwing out old entries just because their clock difference is large therefore seems like a bad approach. It is reasonable to have separate cache spaces for new and old entries, where when under attack, the newly cached entries would be more readily dropped. One could track traffic and only allow reasonable new entries that receive genuine traffic to be converted into old cache entries. Although such a scheme can make attacks harder, it will not fully prevent them. For example, an attacker could send a little traffic (i.e., a ping or TCP syn) after each NS
Top   ToC   RFC3971 - Page 54
   to trick the victim into promoting its cache entry to the old cache.
   To counter this, the node can be more intelligent in keeping its
   cache entries than it would be just by having a black/white old/new
   boundary.

   Distinction of the Sec parameter from the CGA Parameters when forcing
   cache entries out -- by keeping entries with larger Sec parameters
   preferentially -- also appears to be a possible approach, as CGAs
   with higher Sec parameters are harder to spoof.

Appendix C. Message Size When Carrying Certificates

In one example scenario using SEND, an Authorization Delegation Discovery test run was made with a certification path length of 4. Three certificates are sent by using Certification Path Advertisement messages, as the trust anchor's certificate is already known by both parties. With a key length of 1024 bits, the certificate lengths in the test run ranged from 864 to 888 bytes; the variation is due to the differences in the certificate issuer names and address prefix extensions. The different certificates had between 1 and 4 address prefix extensions. The three Certification Path Advertisement messages ranged from 1050 to 1,066 bytes on an Ethernet link layer. The certificate itself accounts for the bulk of the packet. The rest is the trust anchor option, ICMP header, IPv6 header, and link layer header.
Top   ToC   RFC3971 - Page 55

Authors' Addresses

Jari Arkko Ericsson Jorvas 02420 Finland EMail: jari.arkko@ericsson.com James Kempf DoCoMo Communications Labs USA 181 Metro Drive San Jose, CA 94043 USA EMail: kempf@docomolabs-usa.com Brian Zill Microsoft Research One Microsoft Way Redmond, WA 98052 USA EMail: bzill@microsoft.com Pekka Nikander Ericsson Jorvas 02420 Finland EMail: Pekka.Nikander@nomadiclab.com
Top   ToC   RFC3971 - Page 56
Full Copyright Statement

   Copyright (C) The Internet Society (2005).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at ietf-
   ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.