Tech-
invite
3GPP
space
IETF
RFCs
SIP
index
21
22
23
24
25
26
27
28
29
31
32
33
34
35
36
37
38
4‑5x
Content for
TR 36.885
Word version: 14.0.0
0…
2…
2
References
3
Definitions, symbols and abbreviations
4
V2X operation scenarios
5
Technical support for V2V
6
Technical support for V2I/N
7
Technical support for V2P
8
Architecture and high level procedures for V2X
9
Evaluation results
10
Coexistence with DSRC/IEEE 802.11p in the same channel
11
Conclusions
A
Evaluation methodology
B
Detailed evaluation results for PC5-based V2V
C
Detailed evaluation results for Uu-based V2V
D
Detailed evaluation results for Uu-based V2I/N
E
Detailed evaluation results for PC5-based V2I/N
F
Detailed evaluation results for PC5-based V2P
G
Details of latency analysis
H
Traffic characteristics of CAM
$
Change history
2
References
3
Definitions, symbols and abbreviations
Word‑p. 7
3.1
Definitions
3.2
Symbols
Word‑p. 8
3.3
Abbreviations
4
V2X operation scenarios
4.1
Scenario 1
4.1.1
General description
4.1.2
Operation aspects
Word‑p. 9
4.2
Scenario 2
Word‑p. 10
4.2.1
General description
4.2.2
Operation aspects
Word‑p. 11
4.3
Scenario 3
Word‑p. 12
4.3.1
General description
4.3.1.1
Scenario 3A
4.3.1.2
Scenario 3B
Word‑p. 13
4.3.2
Operation aspects
5
Technical support for V2V
Word‑p. 14
5.1
PC5 interface
5.1.1
Resource allocation
5.1.1.1
Resource pool
Word‑p. 15
5.1.1.2
Resource control/selection mechanism
Word‑p. 16
5.1.2
Handling high doppler case
Word‑p. 18
5.1.3
Synchronization
Word‑p. 19
5.2
Uu interface
Word‑p. 20
5.2.1
Downlink enhancements
5.2.2
Uplink enhancements
Word‑p. 22
5.2.1.1
Multiple SPS configurations
Word‑p. 23
5.2.1.2
UE assistance for SPS
5.2.1.3
UE informs eNB when SPS resources are not used
6
Technical support for V2I/N
Word‑p. 24
6.1
PC5 interface
6.2
Uu interface
7
Technical support for V2P
7.1
PC5 interface
7.2
Uu interface
Word‑p. 25
8
Architecture and high level procedures for V2X
8.1
Local breakout for V2X
8.2
MBMS for V2X
Word‑p. 26
8.2.1
Delivery of V2x messages via MBMS
8.2.1.1
Architecture
8.2.1.2
Signalling flow
8.2.2
Support of small and variable areas in V2X
Word‑p. 27
8.2.2.1
Issues
8.2.2.2
Solutions
Word‑p. 28
8.2.2.2.1
Solution for solving issue 1
8.2.2.2.2
Solutions for solving issue 2
8.2.3
Localized MBMS
Word‑p. 31
8.2.3.1
Deployment options of localized MBMS based on implementation
8.2.3.1.1
Localized V2x server and MBMS - Co-located with the eNB
8.2.3.1.2
Localized V2x server and MBMS - Not co-Located with the eNB
Word‑p. 32
8.2.3.1.3
Issues for localized MBMS based on implementation
8.2.3.2
Options of localized user plane MBMS CN functions
Word‑p. 33
8.2.3.2.1
Localized V2x server and LME - Co-located with the eNB
8.2.3.2.2
Localized V2x server and LME - Not co-Located with the eNB
Word‑p. 34
8.2.3.3
V2x server deployment options
8.3
Multiple operator support in V2X
9
Evaluation results
Word‑p. 35
9.1
Capacity analysis
9.1.1
PC5-based V2V
9.1.2
Uu-based V2V
9.1.3
Uu-based V2I/N
Word‑p. 37
9.1.4
PC5-based V2I/N
9.1.5
PC5-based V2P
Word‑p. 39
9.2
Latency analysis
Word‑p. 41
9.2.1
Evaluation of overall latency
9.2.2
Observations
Word‑p. 54
9.3
Power consumption analysis
10
Coexistence with DSRC/IEEE 802.11p in the same channel
Word‑p. 59
11
Conclusions
A
Evaluation methodology
Word‑p. 60
A.1
System level simulation assumptions
A.1.1
Evaluation scenarios
A.1.2
UE drop and mobility model
Word‑p. 62
A.1.3
eNB and RSU deployment
Word‑p. 64
A.1.4
Channel model
Word‑p. 66
A.1.5
Traffic model
Word‑p. 68
A.1.6
Performance metric
Word‑p. 69
A.2
Link level simulation assumptions
Word‑p. 70
B
Detailed evaluation results for PC5-based V2V
Word‑p. 72
B.1
Simulation assumptions
B.2
Simulation results
Word‑p. 80
C
Detailed evaluation results for Uu-based V2V
Word‑p. 102
C.1
Simulation assumptions
C.2
Simulation results
Word‑p. 110
D
Detailed evaluation results for Uu-based V2I/N
Word‑p. 127
D.1
Simulation assumptions
D.2
Simulation results
Word‑p. 129
E
Detailed evaluation results for PC5-based V2I/N
Word‑p. 132
E.1
Simulation assumptions
E.2
Simulation results
Word‑p. 138
F
Detailed evaluation results for PC5-based V2P
Word‑p. 167
F.1
Simulation assumptions
F.2
Simulation results
Word‑p. 174
G
Details of latency analysis
Word‑p. 204
G.1
Scenarios for latency analysis
G.1.1
Latency decomposition of scenarios
G.2
Analysis of latency component
Word‑p. 206
G.2.1
Scheduling policy and parameter values
G.2.2
Analysis of each component
Word‑p. 207
G.2.2.1
L-RRC: RRC_IDLE to RRC_CONNECTD and data bearer setup
G.2.2.2
L-SL: SL transport between two UEs
Word‑p. 208
G.2.2.3
L-UL_sps: UE to eNB via UL
Word‑p. 209
G.2.2.4
L-UL_dynamic_nobsr: UE to eNB via UL with dynamic scheduling without a separate BSR
Word‑p. 210
G.2.2.5
L-UL_dynamic_bsr: UE to eNB via UL with dynamic scheduling with a separate BSR
G.2.2.6
L-NW_uc: Network processing: from eNB (via ITS server) to eNB without passing through BM-SC (to use unicast DL)
Word‑p. 211
G.2.2.7
L-NW_mbms: Network processing: from eNB (via ITS server) to eNB with passing through BM-SC (to use MBMS DL)
G.2.2.8
L-NW_scptm: Network processing: from eNB (via ITS server) to eNB with passing through BM-SC (to use SCPTM DL)
Word‑p. 212
G.2.2.9
L-DL_uc: eNB to UE via unicast DL
G.2.2.10
L-DL_mbms: eNB to UE via MBMS DL
Word‑p. 213
G.2.2.11
L-DL_scptm: eNB to UE via SCPTM DL
G.2.2.12
L-paging: Reception of paging message
Word‑p. 214
G.2.2.13
L-SL_config: Reception of sidelink configuration via dedicated signaling
G.2.2.14
L-RSU: RSU processing
Word‑p. 215
H
Traffic characteristics of CAM
$
Change history
Word‑p. 216