Tech-invite3GPPspaceIETF RFCsSIP

Content for  TR 22.926  Word version:  18.0.0

Top   Top   Up   Prev   Next
1…   5…   6…   7…   8…   9…


6  3GPP Services/features affected by extraterritorialityWord‑p. 10

6.1  IntroductionWord‑p. 10

This clause identifies 3GPP services and features that are affected by extraterritoriality and that are considered in the use cases in this Technical Report (see clause 7 and clause 8).

6.2  Public Warning SystemWord‑p. 10

PWS as described in TS 22.268 provides the public with alerts, warnings and critical information regarding disasters and other emergencies. The general PWS requirements in TS 22.268 are supplemented with regional specific requirements for the Earthquake and Tsunami Warning System (ETWS), the Commercial Mobile Alert System (CMAS), EU-ALERT, and the Korean Public Alert System (KPAS). There is also an Extended PWS, with additional requirements for UEs with no user interface or with a user interface that is incapable of displaying text-based Warning Notifications. In addition, enhancements of Public Warning System (ePWS) is intended to improve the comprehension of a Warning Notification for users with disabilities or for user who are not fluent in the language of the Warning Notifications.
PWS and its different regional variants are generally covered by regulatory requirements (e.g. laws or other regulations). These regulatory requirements can take the form of regulations on operators to support PWS and/or in the form of regulations on devices that are sold in a particular country/region to support PWS. Issues with extraterritoriality can appear when it is not clear which of the national or regional regulatory requirements apply, e.g. in maritime or aeronautical areas. This can include that it is unclear whether PWS should be supported and/or which of the regional versions of PWS must be supported by the operator.
With PWS, Warning Notifications are provided by a Warning Notification Provider. In each country where PWS services are provided, there are procedures in place to determine who (e.g. which agencies or local authorities) can be a Warning Notification Provider. It is unclear whether there will be an organisation with responsibility for coordinating Warning Notifications in extraterritorial areas (e.g. maritime or aeronautical authorities). An alternative is that the network operator selects which Warning Notifications Provider(s) to use for extraterritorial areas. It is clear that a satellite operator with a satellite network covering multiple countries and/or extraterritorial areas will have to interface with multiple Warning Notification Providers.
The Warning Notifications likely include the following five elements:
  • Event Description
  • Area Affected
  • Recommended Action
  • Expiration Time (with time zone)
  • Sending Agency
The Warning Notification Provider will provide information determining in which area the Warning Notifications should be distributed. Based on the geographical information indicated by the Warning Notification Provider, it shall be possible for the operators to define the Notification Area based on their network configuration of the area coverage such as distribution of cells.
With satellite networks, it is possible that the area covered by a single cell is much larger than a cell area in the terrestrial network. This can become a problem when satellite coverage and terrestrial coverage overlap. The difference in coverage areas may cause confusion between users of different types of access that get different messages even though they are in the same location. Furthermore, satellite users may receive information that is not targeted at the area they are in. A possible way of addressing these issues is by filtering Warning Notifications on the UE based on Area Affected information within the Warning Notification and location information available on the UE.

6.3  Charging and BillingWord‑p. 11

Several countries have concluded that income deriving from satellite services is income generated within their territory. This implies that the satellite operator may be subject to paying value added and income tax for the services provided to customers in that country.
It is therefore important that the charging and billing system of the satellite operator can identify in which country a UE was located when it was receiving services from the satellite network.

6.4  Emergency callsWord‑p. 11

Requirements for emergency calls are listed in TS 22.101.
Different countries and regions can have different types of emergency calls. Furthermore, similar types of emergency calls may use different numbers in different countries. TS 22.101 provides the following examples:
19Police (Albania)
100Police and Fire Brigade (Greek cities)
100Ambulance and Fire Brigade (Belgium)
112Police and Ambulance (Italy)
112General emergency call, all categories (Sweden)
115Fire Brigade (Italy)
144Ambulance (Austria)
An issue with extraterritoriality may therefore be that it is not clear which emergency call numbers need to be supported. Fortunately, the UE will be able to recognize many of the emergency call numbers and translate a call to an emergency number to an emergency number request. That way on most phones you can either use 911 or 112 to make an emergency call, irrespective of where you are. Note that this is not the case for all emergency call numbers. A non-terrestrial network operators will have to take the location of the UE into account to determine which emergency call numbers apply for which purposes in case the UE has not recognised the emergency call number as a general emergency call.
One of the main aspects related to extraterritoriality is that emergency calls need to be routed to the correct Public Safety Answering Point (PSAP). Routing to the right PSAP may be done based on the basis of UE determined location; it is assumed it is in the best interest also of the UE owner to route to the right PSAP.
A specific issue is to determine what kind of emergency call support should be provided in extraterritorial areas (e.g. at sea outside territorial waters). Users may expect support for emergency calls in areas where there is no clear PSAP that would be able to organise an emergency response. For maritime users the GMDSS (Gross Maritime Distress Safety System) [6] in the context of SOLAS (Saving of Lives at Sea) [7] provides a communication system for emergency response. Satellite operators may provide both GMDSS and/or terrestrial emergency calls. Note that SOLAS regulations impose requirements on maritime users but does not impose regulatory requirements on satellite operators to provide GMDSS and/or emergency calls.

6.5  Lawful InterceptWord‑p. 11

Interception requirements are subject to national law and international treaties and should be interpreted in accordance with applicable national policies.
Lawful Intercept requirements may apply both on the HPLMN and the VPLMN. In both the HPLMN and the VPLMN, the operator will have to provide Intercept Related Information and Content of Communication.
Requirements universally called out in regional interception regulatory requirements are supported by the system defined in TS 33.126. There may also be requirements unique to a specific region or country.
In many cases, national regulation will require that LI activity is performed entirely within a particular legal jurisdiction. Specifically information indicating the target of interception, is often not allowed to be provided to networks outside the jurisdiction of the particular country of the law enforcement agency that request interception. This may e.g. imply that the satellite ground station and/or base station and the core network all have to be in the same country as the UE, unless countries have made specific agreements. It should therefore be possible to route satellite communication to the right core network based on UE location.
Location Dependent Interception, (LDI) allows a 3GPP network to service multiple interception jurisdictions within its service area. Multiple law enforcement agencies with their own interception areas can be served by the 3GPP network. All the information or rules given for interception within a 3GPP network apply to interception within an Interception Area (IA) when LDI is invoked. A target may be marked in one or more different IAs within the same 3GPP network.
Depending on national requirements, the network operator may be required to report the location of a LI target at the beginning and end of a call and/or session. It may also be a national requirement for the CSP to report the location:
  • during on-going communications;
  • for any mobility management event detected in the 3GPP core network which includes a target's location change or update.
The location information associated with target communication reported to the law enforcement agency shall be at least location information trusted by the 3GPP network (i.e. the location information is either 3GPP network derived or verified).

6.6  Data Retention Policy in cross-border scenarios and international regionsWord‑p. 12

Data protection laws, and in particular data retention policies vary between countries [9]. While many of these laws refer to financial transactions, use of a mobile telecommunication system in some sense involves charging records which are directly related to commercial transactions.
Regulations for data retention as part of data privacy and trade law exists for different sovereign states. In some cases there are negotiated treaties between bordering sovereign states regarding the law applicable in cross-border regions.
The NTN access provider and PLMN operator identify the location of the UE. If the location is ambiguous with respect to the sovereign state territory in which the UE operates, then a cross-border condition arises. The NTN access provider and PLMN operator apply the regulations according to the regulations, treaties and conventions that apply to that particular cross border region. This means, in effect, retaining data according to a specific (single) set of regulations.
Data associated with the UE's activity, such as charging records and other operational information is maintained according to international regulations (where no national regulation exists, e.g. on the high seas,) and according to sovereign state law, where this law applies. Where there is ambiguity, the data retention regulation to apply depends on international treaties between the neighbouring sovereign states.

6.7  Network accessWord‑p. 12

Countries provide frequency licenses for terrestrial networks. Non-terrestrial networks can cover multiple countries and extraterritorial areas. When a non-terrestrial network uses spectrum that is subject to licensing in a specific country or region the non-terrestrial network will have to ensure it has permission from the countries or regions that are covered [10]. Note furthermore it may be possible that a non-terrestrial network cannot get the same frequency bands in all countries or regions it covers. Non-terrestrial networks will have to ensure that their use of radio spectrum in each country or region complies with the frequency license they have in that country or region and the frequency regulation of the sovereign territories which border that country or region.
Regional/national regulators may also define exclusion areas where non-terrestrial communication is not allowed. Operators of non-terrestrial network should ensure that their networks do not provide service in exclusion areas. Further consideration of this is given in clause 7.4 when UEs are in an exclusion area and in clause 8.3 for non-terrestrial networks operation with respect to exclusion areas.
National regulators can assign numbers and identifiers to the network operator (e.g. Mobile Network Code, IMSI/SUPI ranges, E.164 numbers). Also the ITU can provide MNCs (with the Mobile Country Code 901) and E.164 numbers (country code 88x). Mobile and satellite networks broadcast one (or more in case of network sharing) Mobile Country Code (MCC) and Mobile Network Code (MNC) combinations. Broadcast of the MCC for one country in another country should be avoided. This may be a challenge for satellite operators that have large radio cells. An option is to use the international MCC 901. Using the international MCC is also a good choice for extra-territorial areas.

Up   Top   ToC