Tech-invite3GPPspaceIETFspace
959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 8193

Information Model for Large-Scale Measurement Platforms (LMAPs)

Pages: 53
Proposed Standard
Part 3 of 3 – Pages 41 to 53
First   Prev   None

Top   ToC   RFC8193 - Page 41   prevText

4.11. Common Objects: Event Information

The Event information object used throughout the Information Models can initially take one of several different forms. Additional forms may be defined later in order to bind the execution of Schedules to additional Events. The initially defined Event forms are: 1. Periodic Timing: Emits multiple Events periodically according to an interval time defined in seconds 2. Calendar Timing: Emits multiple Events according to a calendar- based pattern, e.g., 22 minutes past each hour of the day on weekdays 3. One-Off Timing: Emits one Event at a specific date and time 4. Immediate: Emits one Event as soon as possible
Top   ToC   RFC8193 - Page 42
   5.  Startup: Emits an Event whenever the MA is started (e.g., at
       device startup)

   6.  Controller Lost: Emits an Event when connectivity to the
       Controller has been lost

   7.  Controller Connected: Emits an Event when connectivity to the
       Controller has been established or re-established

   Optionally, each of the Event options may also specify a randomness
   that should be evaluated and applied separately to each indicated
   Event.  This randomness parameter defines a uniform interval in
   seconds over which the start of the Task is delayed from the starting
   times specified by the Event object.

   Both the periodic and calendar timing objects allow for a series of
   Actions to be executed.  While both have an optional end time, it is
   best practice to always configure an end time and refresh the
   information periodically to ensure that lost MAs do not continue
   their Tasks forever.

   Startup Events are only created on device startup, not when a new
   Instruction is transferred to the MA.  If scheduled Task execution is
   desired both on the transfer of the Instruction and on device
   restart, then both the Immediate and Startup timing needs to be used
   in conjunction.

   The datetime format used for all elements in the Information Model
   MUST conform to RFC 3339 [RFC3339].

4.11.1. Definition of ma-event-obj

object { string ma-event-name; union { ma-periodic-obj ma-event-periodic; ma-calendar-obj ma-event-calendar; ma-one-off-obj ma-event-one-off; ma-immediate-obj ma-event-immediate; ma-startup-obj ma-event-startup; ma-controller-lost-obj ma-event-controller-lost; ma-controller-connected-obj ma-event-controller-connected; } [int ma-event-random-spread;] [int ma-event-cycle-interval;] } ma-event-obj;
Top   ToC   RFC8193 - Page 43
   The ma-event-obj is the main Event object.  Event objects are
   identified by a name.  A generic Event object itself contains a more
   specific Event object.  The set of specific Event objects should be
   extensible.  The initial set of specific Event objects is further
   described below.  The ma-event-obj also includes an optional uniform
   random spread that can be used to randomize the start times of
   Schedules triggered by an Event.  The ma-event-obj consists of the
   following elements:

   ma-event-name:                  The name uniquely identifies an Event
                                   object.  Schedules refer to Event
                                   objects by this name.

   ma-event-periodic:              The ma-event-periodic is present for
                                   periodic timing objects.

   ma-event-calendar:              The ma-event-calendar is present for
                                   calendar timing objects.

   ma-event-one-off:               The ma-event-one-off is present for
                                   one-off timing objects.

   ma-event-immediate:             The ma-event-immediate is present for
                                   immediate Event objects.

   ma-event-startup:               The ma-event-startup is present for
                                   startup Event objects.

   ma-event-controller-lost:       The ma-event-controller-lost is
                                   present for connectivity to
                                   Controller lost Event objects.

   ma-event-controller-connected:  The ma-event-controller-connected is
                                   present for connectivity to
                                   Controller established Event objects.

   ma-event-random-spread:         The optional ma-event-random-spread
                                   adds a random delay defined in
                                   seconds to the Event object.  No
                                   random delay is added if
                                   ma-event-random-spread does not
                                   exist.
Top   ToC   RFC8193 - Page 44
   ma-event-cycle-interval:        The optional ma-event-cycle-interval
                                   defines the duration of the time
                                   interval in seconds that is used to
                                   calculate cycle numbers.  No cycle
                                   number is calculated if
                                   ma-event-cycle-interval does not
                                   exist.

4.11.2. Definition of ma-periodic-obj

object { [datetime ma-periodic-start;] [datetime ma-periodic-end;] int ma-periodic-interval; } ma-periodic-obj; The ma-periodic-obj timing object has an optional start and an optional end time plus a periodic interval. Schedules using an ma-periodic-obj are started periodically between the start and end time. The ma-periodic-obj consists of the following elements: ma-periodic-start: The optional date and time at which Schedules using this object are first started. If not present, it defaults to immediate. ma-periodic-end: The optional date and time at which Schedules using this object are last started. If not present, it defaults to indefinite. ma-periodic-interval: The interval defines the time in seconds between two consecutive starts of Tasks.

4.11.3. Definition of ma-calendar-obj

Calendar timing supports the routine execution of Schedules at specific times and/or on specific dates. It can support more flexible timing than periodic timing since the execution of Schedules does not have to be uniformly spaced. For example, a calendar timing could support the execution of a Measurement Task every hour between 6 pm and midnight on weekdays only. Calendar timing is also required to perform measurements at meaningful times in relation to network usage (e.g., at peak times). If the optional time zone offset is not supplied, then local system time is assumed. This is essential in some use cases to ensure consistent peak-time measurements as well as supporting MA devices
Top   ToC   RFC8193 - Page 45
   that may be in an unknown time zone or to roam between different time
   zones (but know their own time zone information such as through the
   mobile network).

   The calendar elements within the calendar timing do not have defaults
   in order to avoid accidental high-frequency execution of Tasks.  If
   all possible values for an element are desired, then the wildcard *
   is used.

     object {
        [datetime            ma-calendar-start;]
        [datetime            ma-calendar-end;]
        [string              ma-calendar-months<0..*>;]
        [string              ma-calendar-days-of-week<0..*>;]
        [string              ma-calendar-days-of-month<0..*>;]
        [string              ma-calendar-hours<0..*>;]
        [string              ma-calendar-minutes<0..*>;]
        [string              ma-calendar-seconds<0..*>;]
        [int                 ma-calendar-timezone-offset;]
     } ma-calendar-obj;

   ma-calendar-start:            The optional date and time at which
                                 Schedules using this object are first
                                 started.  If not present, it defaults
                                 to immediate.

   ma-calendar-end:              The optional date and time at which
                                 Schedules using this object are last
                                 started.  If not present, it defaults
                                 to indefinite.

   ma-calendar-months:           The optional set of months (1-12) on
                                 which Tasks scheduled using this object
                                 are started.  The wildcard * means all
                                 months.  If not present, it defaults to
                                 no months.

   ma-calendar-days-of-week:     The optional set of days of a week
                                 ("Mon", "Tue", "Wed", "Thu", "Fri",
                                 "Sat", "Sun") on which Tasks scheduled
                                 using this object are started.  The
                                 wildcard * means all days of the week.
                                 If not present, it defaults to no days.
Top   ToC   RFC8193 - Page 46
   ma-calendar-days-of-month:    The optional set of days of a month
                                 (1-31) on which Tasks scheduled using
                                 this object are started.  The wildcard
                                 * means all days of a month.  If not
                                 present, it defaults to no days.

   ma-calendar-hours:            The optional set of hours (0-23) on
                                 which Tasks scheduled using this object
                                 are started.  The wildcard * means all
                                 hours of a day.  If not present, it
                                 defaults to no hours.

   ma-calendar-minutes:          The optional set of minutes (0-59) on
                                 which Tasks scheduled using this object
                                 are started.  The wildcard * means all
                                 minutes of an hour.  If not present, it
                                 defaults to no minutes.

   ma-calendar-seconds:          The optional set of seconds (0-59) on
                                 which Tasks scheduled using this object
                                 are started.  The wildcard * means all
                                 seconds of an hour.  If not present, it
                                 defaults to no seconds.

   ma-calendar-timezone-offset:  The optional time zone offset in
                                 minutes.  If not present, it defaults
                                 to the system's local time zone.

   If a day of the month is specified that does not exist in the month
   (e.g., the 29th of February), then those values are ignored.

4.11.4. Definition of ma-one-off-obj

object { datetime ma-one-off-time; } ma-one-off-obj; The ma-one-off-obj timing object specifies a fixed point in time. Schedules using an ma-one-off-obj are started once at the specified date and time. The ma-one-off-obj consists of the following elements: ma-one-off-time: The date and time at which Schedules using this object are started.
Top   ToC   RFC8193 - Page 47

4.11.5. Definition of ma-immediate-obj

object { // empty } ma-immediate-obj; The ma-immediate-obj Event object has no further information elements. Schedules using an ma-immediate-obj are started as soon as possible.

4.11.6. Definition of ma-startup-obj

object { // empty } ma-startup-obj; The ma-startup-obj Event object has no further information elements. Schedules or Suppressions using an ma-startup-obj are started at MA initialization time.

4.11.7. Definition of ma-controller-lost-obj

object { // empty } ma-controller-lost-obj; The ma-controller-lost-obj Event object has no further information elements. The ma-controller-lost-obj indicates that connectivity to the Controller has been lost. This is determined by a timer started after each successful contact with a Controller. When the timer reaches the controller-timeout (measured in seconds), a ma-controller-lost-obj Event is generated. This Event may be used to start a Suppression.

4.11.8. Definition of ma-controller-connected-obj

object { // empty } ma-controller-connected-obj; The ma-controller-connected-obj Event object has no further information elements. The ma-controller-connected-obj indicates that connectivity to the Controller has been established again after it was lost. This Event may be used to end a Suppression.
Top   ToC   RFC8193 - Page 48

5. Example Execution

The example execution has two Event sources, E1 and E2, and three Schedules, S1, S2, and S3. The Schedule S3 is started by Events of Event source E2 while the Schedules S1 and S2 are both started by Events of the Event source E1. The Schedules S1 and S2 have two Actions each, and Schedule S3 has a single Action. The Event source E2 has no randomization while the Event source E1 has the randomization r. Figure 2 shows a possible timeline of an execution. The time T is progressing downwards. The dotted vertical line indicates progress of time while a dotted horizontal line indicates which Schedules are triggered by an Event. Lines of tildes indicate data flowing from an Action to another Schedule. Actions within a Schedule are named A1, A2, etc.
Top   ToC   RFC8193 - Page 49
     E2    E1   T           S1           S2            S3
                        sequential    parallel     pipelined
                :
             e0 +
                :
                :
           e0+r + .......... + .......... ++
                :            | A1      A1 || A2
                :            +            |+ ~~~~~~~>
                :            | A2         |
                :            |            + ~~~~~~~~>
                :            + ~~~~~~~~~~~~~~~~~~~~~>
                :
                :
             e1 +
                :
           e1+r + .......... + .......... ++
                :            | A1      A1 ||
                :            |            +|~~~~~~~>
                :            |             | A2
                :            +             +~~~~~~~>
                :            | A2
                :            + ~~~~~~~~~~~~~~~~~~~~>
      e0        + ................................... +
                :                                     | A1
             e3 +                                     |
           e3+r + .......... + .......... ++          |
                :            | A1      A1 || A2       |
                :            +            ++ ~~~~~~>  |
                :            | A2                     +
                :            + ~~~~~~~~~~~~~~~~~~~~>
                V

                        Figure 2: Example Execution

   Note that implementations must handle possible concurrency issues.
   In the example execution, Action A1 of Schedule S3 is consuming the
   data that has been forwarded to Schedule S3 while additional data is
   arriving from Action A2 of Schedule S2.

6. IANA Considerations

This document does not require any IANA actions.
Top   ToC   RFC8193 - Page 50

7. Security Considerations

This Information Model deals with information about the control and reporting of the Measurement Agent. There are broadly two security considerations for such an Information Model. Firstly, the Information Model has to be sufficient to establish secure communication Channels to the Controller and Collector such that other information can be sent and received securely. Additionally, any mechanisms that the Network Operator or other device administrator employs to preconfigure the MA must also be secure to protect unauthorized parties from modifying Preconfiguration Information. These mechanisms are important to ensure that the MA cannot be hijacked, for example, to participate in a distributed denial-of-service attack. The second consideration is that no mandated information items should pose a risk to confidentiality or privacy given such secure communication Channels. For this latter reason, items such as the MA context and MA-ID are left optional and can be excluded from some deployments. This may, for example, allow the MA to remain anonymous and for information about location or other context that might be used to identify or track the MA to be omitted or blurred. Implementations and deployments should also be careful about exposing device-ids when this is not strictly needed. An implementation of this Information Model should support all the security and privacy requirements associated with the LMAP Framework [RFC7594]. In addition, users of this Information Model are advised to choose identifiers for Group-IDs, tags, or names of Information Model objects (e.g., configured Tasks, Schedules, or Actions) that do not reveal any sensitive information to people authorized to process measurement results but who are not authorized to know details about the Measurement Agents that were used to perform the measurement.

8. References

8.1. Normative References

[ISO.10646] International Organization for Standardization, "Information Technology - Universal Coded Character Set (UCS)", ISO Standard 10646:2014, September 2014. [POSIX.2] The Open Group, "Standard for Information Technology - Portable Operating System Interface (POSIX(R)) Base Specifications, Issue 7", IEEE Standard 1003.1, 2016 Edition, DOI, 10.1109/IEEESTD.2016.7582338, September 2016.
Top   ToC   RFC8193 - Page 51
   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC3339]  Klyne, G. and C. Newman, "Date and Time on the Internet:
              Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
              <https://www.rfc-editor.org/info/rfc3339>.

   [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66,
              RFC 3986, DOI 10.17487/RFC3986, January 2005,
              <https://www.rfc-editor.org/info/rfc3986>.

   [RFC4122]  Leach, P., Mealling, M., and R. Salz, "A Universally
              Unique IDentifier (UUID) URN Namespace", RFC 4122,
              DOI 10.17487/RFC4122, July 2005,
              <https://www.rfc-editor.org/info/rfc4122>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

[IPPM-REG] Bagnulo, M., Claise, B., Eardley, P., Morton, A., and A. Akhter, "Registry for Performance Metrics", Work in Progress, draft-ietf-ippm-metric-registry-12, June 2017. [RFC3444] Pras, A. and J. Schoenwaelder, "On the Difference between Information Models and Data Models", RFC 3444, DOI 10.17487/RFC3444, January 2003, <https://www.rfc-editor.org/info/rfc3444>. [RFC7398] Bagnulo, M., Burbridge, T., Crawford, S., Eardley, P., and A. Morton, "A Reference Path and Measurement Points for Large-Scale Measurement of Broadband Performance", RFC 7398, DOI 10.17487/RFC7398, February 2015, <https://www.rfc-editor.org/info/rfc7398>. [RFC7536] Linsner, M., Eardley, P., Burbridge, T., and F. Sorensen, "Large-Scale Broadband Measurement Use Cases", RFC 7536, DOI 10.17487/RFC7536, May 2015, <https://www.rfc-editor.org/info/rfc7536>.
Top   ToC   RFC8193 - Page 52
   [RFC7594]  Eardley, P., Morton, A., Bagnulo, M., Burbridge, T.,
              Aitken, P., and A. Akhter, "A Framework for Large-Scale
              Measurement of Broadband Performance (LMAP)", RFC 7594,
              DOI 10.17487/RFC7594, September 2015,
              <https://www.rfc-editor.org/info/rfc7594>.

   [RFC8194]  Schoenwaelder, J. and V. Bajpai, "A YANG Data Model for
              LMAP Measurement Agents", RFC 8194, DOI 10.17487/RFC8194,
              August 2017, <http://www.rfc-editor.org/info/rfc8194>.

Acknowledgements

Several people contributed to this specification by reviewing early draft versions and actively participating in the LMAP Working Group (apologies to those unintentionally omitted): Vaibhav Bajpai, Michael Bugenhagen, Timothy Carey, Alissa Cooper, Kenneth Ko, Al Morton, Dan Romascanu, Henning Schulzrinne, Andrea Soppera, Barbara Stark, and Jason Weil. Marcelo Bagnulo, Trevor Burbridge, Philip Eardley, and Juergen Schoenwaelder worked in part on the Leone research project, which received funding from the European Union Seventh Framework Programme [FP7/2007-2013] under grant agreement number 317647. Juergen Schoenwaelder was partly funded by Flamingo, a Network of Excellence project (ICT-318488) supported by the European Commission under its Seventh Framework Programme.
Top   ToC   RFC8193 - Page 53

Authors' Addresses

Trevor Burbridge BT Adastral Park, Martlesham Heath Ipswich IP5 3RE United Kingdom Email: trevor.burbridge@bt.com Philip Eardley BT Adastral Park, Martlesham Heath Ipswich IP5 3RE United Kingdom Email: philip.eardley@bt.com Marcelo Bagnulo Universidad Carlos III de Madrid Av. Universidad 30 Leganes, Madrid 28911 Spain Email: marcelo@it.uc3m.es Juergen Schoenwaelder Jacobs University Bremen Campus Ring 1 Bremen 28759 Germany Email: j.schoenwaelder@jacobs-university.de