Tech-invite3GPPspecsGlossariesIETFRFCsGroupsSIPABNFs   Ti+   SearchTech-invite World Map Symbol

RFC 7945

 
 
 

Information-Centric Networking: Evaluation and Security Considerations

Part 2 of 2, p. 21 to 38
Prev Section

 


prevText      Top      ToC       Page 21 
4.  Evaluation Tools

   Since ICN is an emerging area, the community is in the process of
   developing effective evaluation environments, including releasing
   open-source implementations, simulators, emulators, and testbeds.  To
   date, none of the available evaluation tools can be seen as the one
   and only community reference evaluation tool.  Furthermore, no single
   environment supports all well-known ICN approaches, as we describe
   below, hindering the direct comparison of the results obtained for
   different ICN approaches.  The subsections that follow review the
   currently publicly available ICN implementations, simulators, and
   experimental facilities.

   An updated list of the available evaluation tools will be maintained
   at the ICNRG Wiki page: <https://trac.tools.ietf.org/group/irtf/trac/
   wiki/IcnEvaluationAndTestbeds>

4.1.  Open-Source Implementations

   The Named Data Networking (NDN) project has open-sourced a software
   reference implementation of the architecture and protocol called NDN
   (http://named-data.net).  NDN is available for deployment on various
   operating systems and includes C and Java libraries that can be used
   to build applications.

   CCN-lite (http://www.ccn-lite.net) is a lightweight implementation of
   the CCN protocol that supports most of the key features of CCNx and
   is interoperable with CCNx.  CCN-lite implements the core CCN logic
   in about 1000 lines of code, so it is ideal for classroom work and
   course projects as well as for quickly experimenting with CCN
   extensions.  For example, Baccelli et al. use CCN-lite on top of the
   RIOT operating system to conduct experiments over an IoT testbed
   [Baccelli14].

Top      Up      ToC       Page 22 
   PARC is offering CCN source code under various licensing schemes,
   please see <http://www.ccnx.org> for details.

   The PURSUIT project (http://www.fp7-pursuit.eu) has open-sourced its
   Blackhawk publish-subscribe (Pub/Sub) implementation for Linux and
   Android; more details are available at
   <https://github.com/fp7-pursuit/blackadder>.  Blackadder uses the
   Click modular router for ease of development.  The code distribution
   features a set of tools, test applications, and scripts.  The POINT
   project (http://www.point-h2020.eu) is currently maintaining
   Blackadder.

   The 4WARD and SAIL projects have open-sourced software that
   implements different aspects of NetInf, e.g., the NetInf URI format
   and HTTP and UDP convergence layer, using different programming
   languages.  The Java implementation provides a local caching proxy
   and client.  Further, an OpenNetInf prototype is available as well as
   a hybrid host-centric and information-centric network architecture
   called the Global Information Network (GIN), a browser plug-in and
   video-streaming software.  See <http://www.netinf.org/open-source>
   for more details.

4.2.  Simulators and Emulators

   Simulators and emulators should be able to capture faithfully all
   features and operations of the respective ICN architecture(s) and any
   limitations should be openly documented.  It is essential that these
   tools and environments come with adequate logging facilities so that
   one can use them for in-depth analysis as well as debugging.
   Additional requirements include the ability to support medium- to
   large-scale experiments, the ability to quickly and correctly set
   various configurations and parameters, as well as to support the
   playback of traffic traces captured on a real testbed or network.
   Obviously, this does not even begin to touch upon the need for strong
   validation of any evaluated implementations.

4.2.1.  ndnSIM

   The Named Data Networking (NDN) project (http://named-data.net) has
   developed ndnSIM [ndnSIM] [ndnSIM2]; this is a module that can be
   plugged into the ns-3 simulator (https://www.nsnam.org) and supports
   the core features of NDN.  One can use ndnSIM to experiment with
   various NDN applications and services as well as components developed
   for NDN such as routing protocols and caching and forwarding
   strategies, among others.  The code for ns-3 and ndnSIM is openly
   available to the community and can be used as the basis for
   implementing ICN protocols or applications.  For more details, see
   <http://ndnsim.net/2.0/>.

Top      Up      ToC       Page 23 
4.2.2.  ccnSIM

   ccnSim [ccnSim] is a CCN-specific simulator that was specially
   designed to handle forwarding of a large number of CCN-chunks
   (http://www.infres.enst.fr/~drossi/index.php?n=Software.ccnSim).
   ccnSim is written in C++ for the OMNeT++ simulation framework
   (https://omnetpp.org).  Other CCN-specific simulators include the CCN
   Packet-Level Simulator [CCNPL] and CCN-Joker [Cianci12].  CCN-Joker
   emulates in user space all basic aspects of a CCN node (e.g.,
   handling of Interest and Data packets, cache sizing, replacement
   policies), including both flow and congestion control.  The code is
   open source and is suitable for both emulation-based analyses and
   real experiments.  Finally, Cabral et al. [MiniCCNx] use container-
   based emulation and resource isolation techniques to develop a
   prototyping and emulation tool.

4.2.3.  Icarus Simulator

   The Icarus simulator [ICARUS] focuses on caching in ICN and is
   agnostic with respect to any particular ICN implementation.  The
   simulator is implemented in Python, uses the Fast Network Simulator
   Setup tool [Saino13], and is available at
   <http://icarus-sim.github.io>.  Icarus has several caching strategies
   implemented, including among others ProbCache [Psaras12], node-
   centrality-based caching [Chai12], and hash-route-based caching
   [HASHROUT].

   ProbCache [Psaras12] is taking a resource management view on caching
   decisions and approximates the available cache capacity along the
   path from source to destination.  Based on this approximation and in
   order to reduce caching redundancy across the path, it caches content
   probabilistically.  According to [Chai12], the node with the highest
   "betweenness centrality" along the path from source to destination is
   responsible for caching incoming content.  Finally, [HASHROUT]
   calculates the hash function of a content's name and assigns contents
   to caches of a domain according to that.  The hash space is split
   according to the number of caches of the network.  Then, upon
   subsequent requests, and based again on the hash of the name included
   in the request, edge routers redirect requests to the cache assigned
   with the corresponding hash space.  [HASHROUT] is an off-path caching
   strategy; in contrast to [Psaras12] and [Chai12], it requires minimum
   coordination and redirection overhead.  In its latest update, Icarus
   also includes implementation of the "Satisfied Interest Table" (SIT)
   [Sourlas15].  The SIT points in the direction where content has been
   sent recently.  Among other benefits, this enables information
   resilience in case of network fragmentation (i.e., content can still

Top      Up      ToC       Page 24 
   be found in neighbor caches or in users' devices) and inherently
   supports user-assisted caching (i.e., P2P-like content distribution).

   Tortelli et al. [ICNSIMS] provide a comparison of ndnSIM, ccnSim, and
   Icarus.

4.3.  Experimental Facilities

   An important consideration in the evaluation of any kind of future
   Internet mechanism lies in the characteristics of that evaluation
   itself.  Central to the assessment of the features provided by a
   novel mechanism is the consideration of how it improves over already
   existing technologies, and by "how much".  With the disruptive nature
   of clean-slate approaches generating new and different technological
   requirements, it is complex to provide meaningful results for a
   network-layer framework, in comparison with what is deployed in the
   current Internet.  Thus, despite the availability of ICN
   implementations and simulators, the need for large-scale environments
   supporting experimental evaluation of novel research is of prime
   importance to the advancement of ICN deployment.

   Different experimental facilities have different characteristics and
   capabilities, e.g., having low cost of use, reproducible
   configuration, easy-to-use tools, and available background traffic,
   and being sharable.

4.3.1.  Open Network Lab (ONL)

   An example of an experimental facility that supports CCN is the Open
   Network Lab [ONL] that currently comprises 18 extensible gigabit
   routers and over a 100 computers representing clients and is freely
   available to the public for running CCN experiments.  Nodes in ONL
   are preloaded with CCNx software.  ONL provides a graphical user
   interface for easy configuration and testbed setup as per the
   experiment requirements, and also serves as a control mechanism,
   allowing access to various control variables and traffic counters.

   Further, it is also possible to run and evaluate CCN over popular
   testbeds [PLANETLAB] [EMULAB] [DETERLAB] [OFELIA] by directly
   running, for example, the CCNx open-source code [Salsano13]
   [Carofiglio13] [Awiphan13] [Bernardini14].  Also, the Network
   Experimentation Programming Interface (NEPI) [NEPI] is a tool
   developed for controlling and managing large-scale network
   experiments.  NEPI can be used to control and manage large-scale CCNx
   experiments, e.g., on PlanetLab [Quereilhac14].

Top      Up      ToC       Page 25 
4.3.2.  POINT Testbed

   The POINT project is maintaining a testbed with 40 machines across
   Europe, North America (Massachusetts Institute of Technology (MIT)),
   and Japan (National Institute of Information and Communications
   Technology (NICT)) interconnected in a topology containing one
   Topology Manager and one rendezvous node that handle all
   publish/subscribe and topology formation requests [Parisis13].  All
   machines run Blackadder (see Section 4.1).  New nodes can join, and
   experiments can be run on request.

4.3.3.  CUTEi: Container-Based ICN Testbed

   NICT has also developed a testbed used for ICN experiments [Asaeda14]
   comprising multiple servers located in Asia and other locations.
   Each testbed server (or virtual machine) utilizes a Linux kernel-
   based container (LXC) for node virtualization.  This testbed enables
   users to run applications and protocols for ICN in two
   experimentation modes using two different container designs:

      1.  application-level experimentation using a "common container"
          and

      2.  network-level experimentation using a "user container."

   A common container is shared by all testbed users, and a user
   container is assigned to one testbed user.  A common container has a
   global IP address to connect with other containers or external
   networks, whereas each user container uses a private IP address and a
   user space providing a closed networking environment.  A user can
   login to his/her user containers using SSH with his/her certificate,
   or access them from PCs connected to the Internet using SSH
   tunneling.

   This testbed also implements an "on-filesystem cache" to allocate
   caching data on a UNIX filesystem.  The on-filesystem cache system
   accommodates two kinds of caches: "individual cache" and "shared
   cache."  Individual cache is accessible for one dedicated router for
   the individual user, while shared cache is accessible for a set of
   routers in the same group to avoid duplicated caching in the
   neighborhood for cooperative caching.

5.  Security Considerations

   This document does not impact the security of the Internet, but
   Section 3 outlines security and privacy concerns that might affect a
   deployment of a future ICN approach.

Top      Up      ToC       Page 26 
6.  Informative References

   [4WARD6.1] Ohlman, B., et al., "First NetInf Architecture
              Description", 4WARD Project Deliverable D-6.1, April 2009.

   [4WARD6.3] Ahlgren, B., et al., "NetInf Evaluation", 4WARD Project
              Deliverable D-6.3, June 2010.

   [Arlitt97] Arlitt, M. and C. Williamson, "Internet web servers:
              workload characterization and performance implications",
              IEEE/ACM Transactions on Networking, vol. 5, pp. 631-645,
              DOI 10.1109/90.649565, 1997.

   [Asaeda14] Asaeda, H., Li, R., and N. Choi, "Container-Based Unified
              Testbed for Information-Centric Networking", IEEE Network,
              vol. 28, no. 6, pp. 60-66, DOI 10.1109/MNET.2014.6963806,
              2014.

   [Awiphan13]
              Awiphan, S., et al., "Video streaming over content centric
              networking: Experimental studies on PlanetLab", Proc.
              Computing, Communications and IT Applications Conference
              (ComComAp), IEEE, DOI 10.1109/ComComAp.2013.6533602, 2013.

   [Baccelli14]
              Baccelli, E., et al., "Information Centric Networking in
              the IoT: Experiments with NDN in the Wild", Proceedings of
              the 1st international conference on Information-centric
              networking (ICN '14), ACM, DOI 10.1145/2660129.2660144,
              2014.

   [Barabasi99]
              Barabasi, A. and R. Albert, "Emergence of Scaling in
              Random Networks", Science, vol. 286, no. 5439, pp.
              509-512, DOI 10.1126/science.286.5439.509, 1999.

   [Barford98]
              Barford, P. and M. Crovella, "Generating representative
              web workloads for network and server performance
              evaluation", in ACM SIGMETRICS '98 / PERFORMANCE '98, pp.
              151-160, DOI 10.1145/277851.277897, 1998.

   [Barford99]
              Barford, P., Bestavros, A., Bradley, A., and M. Crovella,
              "Changes in web client access patterns: Characteristics
              and caching implications", World Wide Web, vol. 2, pp.
              15-28, DOI 10.1023/A:1019236319752, 1999.

Top      Up      ToC       Page 27 
   [Bellissimo04]
              Bellissimo, A., Levine, B., and P. Shenoy, "Exploring the
              Use of BitTorrent as the Basis for a Large Trace
              Repository", University of Massachusetts Amherst, Tech.
              Rep. 04-41, 2004.

   [Bernardini14]
              Bernardini, C., et al., "Socially-aware caching strategy
              for content centric networking", Proc. IFIP Networking
              Conference, DOI 10.1109/IFIPNetworking.2014.6857093, 2014.

   [Blefari-Melazzi12]
              Blefari Melazzi, N., et al., "Scalability Measurements in
              an Information-Centric Network", Springer Lecture Notes in
              Computer Science (LNCS), vol. 7586,
              DOI 10.1007/978-3-642-41296-7_6, 2012.

   [Breslau99]
              Breslau, L., Cao, P., Fan, L., Phillips, G., and S.
              Shenker, "Web caching and zipf-like distributions:
              evidence and implications", Proc. of INFOCOM '99, New York
              (NY), USA, DOI 10.1109/INFCOM.1999.749260, March 1999.

   [Busari02] Busari, M. and C. Williamson, "ProWGen: a synthetic
              workload generation tool for simulation evaluation of web
              proxy caches", Computer Networks, vol. 38, no. 6, pp.
              779-794, DOI 10.1016/S1389-1286(01)00285-7, 2002.

   [Carofiglio11]
              Carofiglio, G., Gallo, M., Muscariello, L., and D. Perino,
              "Modeling Data Transfer in Content-Centric Networking",
              Proceedings of the 23rd International Teletraffic Congress
              (ITC '11), San Francisco, USA, September 2011.

   [Carofiglio13]
              Carofiglio, G., et al., "Optimal multipath congestion
              control and request forwarding in Information-Centric
              Networks", Proc. 2013 21st IEEE International Conference
              on Network Protocols (ICNP),
              DOI 10.1109/ICNP.2013.6733576, 2013.

   [CCNPL]    Institut de Recherche Technologique (IRT) SystemX, "CCNPL-
              SIM", <http://systemx.enst.fr/ccnpl-sim>.

   [ccnSim]   Rossini, G. and D. Rossi, "Large scale simulation of CCN
              networks", Proc. AlgoTel 2012, La Grande Motte, France,
              May 2012.

Top      Up      ToC       Page 28 
   [Cha07]    Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.-Y., and S. Moon,
              "I tube, you tube, everybody tubes: analyzing the world's
              largest user generated content video system", Proceedings
              of the 7th ACM SIGCOMM conference on Internet measurement
              (IMC '07), San Diego (CA), USA,
              DOI 10.1145/1298306.1298309, October 2007.

   [Chaabane13]
              Chaabane, A., De Cristofaro, E., Kaafar, M., and E. Uzun,
              "Privacy in Content-Oriented Networking: Threats and
              Countermeasures", ACM SIGCOMM Computer Communication
              Review, Vol. 43, Issue 3, DOI 10.1145/2500098.2500102,
              July 2013.

   [Cheng08]  Cheng, X., Dale, C., and J. Liu, "Statistics and social
              network of YouTube videos", 16th International Workshop on
              Quality of Service (IWQoS 2008), IEEE, pp. 229-238,
              DOI 10.1109/IWQOS.2008.32, 2008.

   [Cheng13]  Cheng, X., Liu, J., and C. Dale, "Understanding the
              Characteristics of Internet Short Video Sharing: YouTube
              as a Case Study", IEEE Transactions on Multimedia, vol.
              15, issue 5, DOI 10.1109/TMM.2013.2265531, 2013.

   [Chai12]   Chai, W., He, D., Psaras, I., and G. Pavlou, "Cache 'Less
              for More' in Information-centric Networks", Proceedings of
              the 11th international IFIP TC 6 conference on Networking
              (IFIP '12), DOI 10.1007/978-3-642-30045-5_3, 2012.

   [Cianci12] Cianci, I. et al. "CCN - Java Opensource Kit EmulatoR for
              Wireless Ad Hoc Networks", Proc. of the 7th International
              Conference on Future Internet Technologies (CFI '12),
              Seoul, Korea, DOI 10.1145/2377310.2377313, September 2012.

   [CMT-D5.2] Beben, A., et al., "Scalability of COMET System", COMET
              Project Deliverable D5.2, February 2013.

   [CMT-D6.2] Georgiades, M., et al., "Prototype Experimentation and
              Demonstration", COMET Project Deliverable D6.2, February
              2013.

   [Dannewitz10]
              Dannewitz, C., Golic, J., Ohlman, B., B. Ahlgren, "Secure
              Naming for A Network of Information", IEEE Conference on
              Computer Communications Workshops (INFOCOM), San Diego,
              CA, DOI 10.1109/INFCOMW.2010.5466661, March 2010.

Top      Up      ToC       Page 29 
   [DETERLAB] Benzel, T., "The Science of Cyber-Security
              Experimentation: The DETER Project", Proceedings of the
              27th Annual Computer Security Applications Conference
              (ACSAC '11), DOI 10.1145/2076732.2076752, December 2011.

   [Dimitropoulos09]
              Dimitropoulos, X., et al., "Graph annotations in modeling
              complex network topologies", ACM Transactions on Modeling
              and Computer Simulation (TOMACS), vol. 19, no. 4,
              DOI 10.1145/1596519.1596522, November 2009.

   [DONA]     Koponen, T., et al., "A Data-Oriented (and Beyond) Network
              Architecture", Proceedings of the 2007 conference on
              Applications, technologies, architectures, and protocols
              for computer communications (SIGCOMM '07), ACM,
              DOI 10.1145/1282380.1282402, 2007.

   [EMULAB]   Eide, E., et al., "An Experimentation Workbench for
              Replayable Networking Research", Proceedings of the 4th
              USENIX conference on Networked systems design &
              implementation (NSDI '07), 2007.

   [Fotiou12] Fotiou, N., et al., "Access control enforcement delegation
              for information-centric networking architectures",
              Proceedings of the second edition of the ICN workshop on
              Information-centric networking (ICN '12), ACM,
              DOI 10.1145/2342488.2342507, 2012.

   [Fotiou14] Fotiou, N., et al., "A framework for privacy analysis of
              ICN architectures", Proc. Second Annual Privacy Forum
              (APF), Springer, DOI 10.1007/978-3-319-06749-0_8, 2014.

   [Fri12]    Fricker, C., Robert,  P., Roberts, J. and N. Sbihi,
              "Impact of traffic mix on caching performance in a
              content-centric network", 2012 IEEE Conference on Computer
              Communications Workshops (INFOCOM WKSHPS), Orlando, USA,
              DOI 10.1109/INFCOMW.2012.6193511, March 2012.

   [Goog08]   Google, "Official Google Blog: We knew the web was
              big...", July 2008, <http://googleblog.blogspot.it/
              2008/07/we-knew-web-was-big.html>.

   [Guo07]    Guo, L., Chen, S., Xiao, Z., Tan, E., Ding, X., and X.
              Zhang, "A performance study of BitTorrent-like peer-to-
              peer systems", IEEE Journal on Selected Areas in
              Communication, vol. 25, no. 1, pp. 155-169,
              DOI 10.1109/JSAC.2007.070116, 2007.

Top      Up      ToC       Page 30 
   [HASHROUT] Saino, L., Psaras, I., and G. Pavlou, "Hash-routing
              Schemes for Information-Centric Networking", Proceedings
              of the 3rd ACM SIGCOMM workshop on Information-centric
              networking (ICN '13), DOI 10.1145/2491224.2491232, 2013.

   [Hefeeda08]
              Hefeeda, M. and O. Saleh, "Traffic Modeling and
              Proportional Partial Caching for Peer-to-Peer Systems",
              IEEE/ACM Transactions on Networking, vol. 16, no. 6, pp.
              1447-1460, DOI 10.1109/TNET.2008.918081, 2008.

   [ICARUS]   Saino, L., Psaras, I., and G. Pavlou, "Icarus: a Caching
              Simulator for Information Centric Networking (ICN)",
              Proceedings of the 7th International ICST Conference on
              Simulation Tools and Techniques (SimuTools '14),
              DOI 10.4108/icst.simutools.2014.254630, 2014.

   [Detti12]  Detti, A., et al., "Supporting the Web with an Information
              Centric Network that Routes by Name", Elsevier Computer
              Networks, vol. 56, no. 17,
              DOI 10.1016/j.comnet.2012.08.006, November 2012.

   [ICNSIMS]  Tortelli, M., et al., "CCN Simulators: Analysis and Cross-
              Comparison", Proceedings of the 1st international
              conference on Information-centric networking (ICN '14),
              ACM, DOI 10.1145/2660129.2660133, 2014.

   [IMB2014]  Imbrenda, C., Muscariello, L., and D. Rossi, "Analyzing
              Cacheable Traffic in ISP Access Networks for Micro CDN
              Applications via Content-Centric Networking", Proceedings
              of the 1st international conference on Information-centric
              networking (ICN '14), DOI 10.1145/2660129.2660146, 2014.

   [Ion13]    Ion, M., Zhang, J., and E. Schooler, "Toward content-
              centric privacy in ICN: attribute-based encryption and
              routing", Proceedings of the ACM SIGCOMM 2013 conference
              on SIGCOMM (SIGCOMM '13), ACM,
              DOI 10.1145/2486001.2491717, 2013.

   [Jacobson09]
              Jacobson, V., et al., "Networking Named Content",
              Proceedings of the 5th international conference on
              Emerging networking experiments and technologies (CoNEXT
              '09), DOI 10.1145/1658939.1658941, 2009.

Top      Up      ToC       Page 31 
   [Katsaros12]
              Katsaros, K., Xylomenos, G., and G. Polyzos, "GlobeTraff:
              a traffic workload generator for the performance
              evaluation of future Internet architectures", 2012 5th
              International Conference on New Technologies, Mobility and
              Security (NTMS), DOI 10.1109/NTMS.2012.6208742, 2012.

   [Katsaros15]
              Katsaros, K., et al., "On the Inter-domain Scalability of
              Route-by-Name Information-Centric Network Architectures",
              Proc. IFIP Networking Conference,
              DOI 10.1109/IFIPNetworking.2015.7145308, 2015.

   [Kaune09]  Kaune, S. et al., "Modelling the Internet Delay Space
              Based on Geographical Locations", 17th Euromicro
              International Conference on Parallel, Distributed and
              Network-based Processing, Weimar, Germany,
              DOI 10.1109/PDP.2009.44, 2009.

   [Labovitz10]
              Labovitz, C., Iekel-Johnson, S., McPherson, D., Oberheide,
              J., and F. Jahanian, "Internet inter-domain traffic", In
              Proceedings of the ACM SIGCOMM 2010 conference (SIGCOMM
              DOI 10.1145/1851182.1851194, 2010.

   [Lauinger10]
              Lauinger, T., "Security and Scalability of Content-Centric
              Networking", Masters Thesis, Technische Universitaet
              Darmstadt and Eurecom, September 2010.

   [Lauinger12]
              Lauinger, Y., et al, "Privacy Risks in Named Data
              Networking: What is the Cost of Performance?", ACM SIGCOMM
              Computer Communication Review, Vol. 42, Issue 5,
              DOI 10.1145/2378956.2378966, 2012.

   [Led12]    Lederer, S., Muller, C., and C. Timmerer, "Dynamic
              adaptive streaming over HTTP dataset", Proceedings of the
              ACM Multimedia Systems Conference (MMSys '12), pp. 89-94,
              DOI 10.1145/2155555.2155570, 2012.

   [Lewko11]  Lewko, A. and B. Waters, "Decentralizing attribute-based
              encryption", Proc. of EUROCRYPT 2011, Lecture Notes in
              Computer Science (LNCS), vol. 6632, pp. 568-588,
              DOI 10.1007/978-3-642-20465-4_31, 2011.

Top      Up      ToC       Page 32 
   [LIRA]     Psaras, I., Katsaros, K., Saino, L., and G. Pavlou, "Lira:
              A location independent routing layer based on source-
              provided ephemeral names", Electronic and Electrical Eng.
              Dept., UCL, London, UK, Tech. Rep. 2014,
              <http://www.ee.ucl.ac.uk/comit-project/publications.html>.

   [Mahanti00]
              Mahanti, A., Williamson, C., and D. Eager., "Traffic
              analysis of a web proxy caching hierarchy", IEEE Network,
              Vol. 14, No. 3, pp. 16-23, DOI 10.1109/65.844496, May/June
              2000.

   [Maier09]  Maier, G., Feldmann, A., Paxson, V., and M. Allman, "On
              dominant characteristics of residential broadband internet
              traffic", In Proceedings of the 9th ACM SIGCOMM conference
              on Internet measurement conference (IMC '09), New York,
              NY, USA, 90-102. DOI 10.1145/1644893.1644904, 2009.

   [Marciniak08]
              Marciniak, P., Liogkas, N., Legout, A., and E. Kohler,
              "Small is not always beautiful",  In Proc. of IPTPS,
              International Workshop of Peer-to-Peer Systems, Tampa Bay,
              Florida (FL), USA, February 2008.

   [MiniCCNx] Cabral, C., et al., "High fidelity content-centric
              experiments with Mini-CCNx", 2014 IEEE Symposium on
              Computers and Communications (ISCC),
              DOI 10.1109/ISCC.2014.6912537, 2014.

   [Montage]  Hussain, A. and J. Chen, "Montage Topology Manager: Tools
              for Constructing and Sharing Representative Internet
              Topologies", DETER Technical Report, ISI-TR-684, August
              2012.

   [Muscariello11]
              Muscariello, L., Carofiglio, G., and M. Gallo, "Bandwidth
              and storage sharing performance in information centric
              networking", Proceedings of the ACM SIGCOMM workshop on
              Information-centric networking (ICN '11),
              DOI 10.1145/2018584.2018593, 2011.

   [ndnSIM]   Afanasyev, A., et al., "ndnSIM: NDN simulator for NS-3",
              NDN Technical Report NDN-0005, Revision 2, October 2012.

   [ndnSIM2]  Mastorakis, S., et al., "ndnSIM 2.0: A new version of the
              NDN simulator for NS-3", NDN Technical Report NDN-0028,
              Revision 1, January 2015.

Top      Up      ToC       Page 33 
   [NEPI]     Quereilhac, A., et al., "NEPI: An integration framework
              for Network Experimentation", 2011 19th International
              Conference on Software, Telecommunications and Computer
              Networks (SoftCOM), IEEE, 2011.

   [OFELIA]   Sune, M., et al., "Design and implementation of the OFELIA
              FP7 facility: The European OpenFlow testbed", Computer
              Networks, vol. 61, pp. 132-150,
              DOI 10.1016/j.bjp.2013.10.015, March 2014.

   [ONL]      DeHart, J., et al., "The open network laboratory: a
              resource for networking research and education", ACM
              SIGCOMM Computer Communication Review (CCR), vol. 35, no.
              5, pp. 75-78, DOI 10.1145/1096536.1096547, 2005.

   [Parisis13]
              Parisis, G., Trossen, D., and H. Asaeda, "A Node Design
              and a Framework for Development and Experimentation for an
              Information-Centric Network", IEICE Transactions on
              Communications, vol. E96-B, no. 7, pp. 1650-1660, July
              2013.

   [Perino11] Perino, D. and M. Varvello, "A Reality Check for Content
              Centric Networking", Proceedings of the ACM SIGCOMM
              workshop on Information-centric networking (ICN '11),
              DOI 10.1145/2018584.2018596, 2011.

   [PLANETLAB]
              Chun, B., et al., "Planetlab: an overlay testbed for
              broad-coverage services", ACM SIGCOMM Computer
              Communication Review (CCR), vol. 33, no. 3, pp. 3-12,
              DOI 10.1145/956993.956995, 2003.

   [PRST4.5]  Riihijarvi, J., et al., "Final Architecture Validation and
              Performance Evaluation Report", PURSUIT Project
              Deliverable D4.5, January 2013.

   [Psaras11] Psaras, I., Clegg, R., Landa, R., Chai, W., Pavlou, G.,
              "Modelling and Evaluation of CCN-Caching Trees",
              Proceedings of the 10th international IFIP TC 6 conference
              on Networking, Valencia, Spain, May 2011.

   [Psaras12] Psaras, I., Chai, W., and G. Pavlou, "Probabilistic In-
              Network Caching for Information-Centric Networks",
              Proceedings of the second edition of the ICN workshop on
              Information-centric networking (ICN '12),
              DOI 10.1145/2342488.2342501, 2012.

Top      Up      ToC       Page 34 
   [Quereilhac14]
              Quereilhac, A., et al., "Demonstrating a unified ICN
              development and evaluation framework", Proceedings of the
              1st international conference on Information-centric
              networking (ICN '14), ACM, DOI 10.1145/2660129.2660132,
              2014.

   [Renault09]
              Renault, E., Ahmad, A., and M. Abid, "Toward a Security
              Model for the Future Network of Information", Proceedings
              of the 4th International Conference on Ubiquitous
              Information Technologies & Applications (ICUT '09), IEEE,
              DOI 10.1109/ICUT.2009.5405676, 2009.

   [RFC2330]  Paxson, V., Almes, G., Mahdavi, J., and M. Mathis,
              "Framework for IP Performance Metrics", RFC 2330,
              DOI 10.17487/RFC2330, May 1998,
              <http://www.rfc-editor.org/info/rfc2330>.

   [RFC5743]  Falk, A., "Definition of an Internet Research Task Force
              (IRTF) Document Stream", RFC 5743, DOI 10.17487/RFC5743,
              December 2009, <http://www.rfc-editor.org/info/rfc5743>.

   [RFC6920]  Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B.,
              Keranen, A., and P. Hallam-Baker, "Naming Things with
              Hashes", RFC 6920, DOI 10.17487/RFC6920, April 2013,
              <http://www.rfc-editor.org/info/rfc6920>.

   [RFC7476]  Pentikousis, K., Ed., Ohlman, B., Corujo, D., Boggia, G.,
              Tyson, G., Davies, E., Molinaro, A., and S. Eum,
              "Information-Centric Networking: Baseline Scenarios",
              RFC 7476, DOI 10.17487/RFC7476, March 2015,
              <http://www.rfc-editor.org/info/rfc7476>.

   [RFC7927]  Kutscher, D., Ed., Eum, S., Pentikousis, K., Psaras, I.,
              Corujo, D., Saucez, D., Schmidt, T., and M. Waehlisch,
              "Information-Centric Networking (ICN) Research
              Challenges", RFC 7927, DOI 10.17487/RFC7927, July 2016,
              <http://www.rfc-editor.org/info/rfc7927>.

   [RFC7933]  Westphal, C., Ed., Lederer, S., Posch, D., Timmerer, C.,
              Azgin, A., Liu, W., Mueller, C., Detti, A., Corujo, D.,
              Wang, J., Montpetit, M., and N. Murray, "Adaptive Video
              Streaming over Information-Centric Networking (ICN)",
              RFC 7933, DOI 10.17487/RFC7933, August 2016,
              <http://www.rfc-editor.org/info/rfc7933>.

Top      Up      ToC       Page 35 
   [SAIL-B2]  SAIL, "NetInf Content Delivery and Operations", SAIL
              Project Deliverable D-B.2, May 2012.

   [SAIL-B3]  Kutscher, D., Ed., et al., "Final NetInf Architecture",
              SAIL Project Deliverable D-B.3, January 2013,
              <http://www.sail-project.eu/deliverables/>.

   [Saino13]  Saino, L., Cocora, C., and G. Pavlou, "A Toolchain for
              Simplifying Network Simulation Setup", Proceedings of the
              6th International ICST Conference on Simulation Tools and
              Techniques (SimuTools '13), 2013.

   [Saleh06]  Saleh, O., and M. Hefeeda, "Modeling and caching of peer-
              to-peer traffic", Proceedings of the 2006 IEEE
              International Conference on Network Protocols (ICNP),
              DOI 10.1109/ICNP.2006.320218, 2006.

   [Salsano12]
              Salsano, S., et al., "Transport-Layer Issues in
              Information Centric Networks", Proceedings of the second
              edition of the ICN workshop on Information-centric
              networking (ICN '12), ACM, DOI 10.1145/2342488.2342493,
              2012.

   [Salsano13]
              Salsano, S., et al., "Information Centric Networking over
              SDN and OpenFlow: Architectural Aspects and Experiments on
              the OFELIA Testbed", Computer Networks, vol. 57, no. 16,
              pp. 3207-3221, DOI 10.1016/j.comnet.2013.07.031, November
              2013.

   [SensReqs] Karnouskos, S., et al., "Requirement considerations for
              ubiquitous integration of cooperating objects", 2011 4th
              IFIP International Conference on New Technologies,
              Mobility and Security (NTMS),
              DOI 10.1109/NTMS.2011.5720605, 2011.

   [Smetters09]
              Smetters, D., and V. Jacobson, "Securing network content",
              Technical Report TR-2009-01, PARC, 2009.

   [Sourlas15]
              Sourlas, V., Tassiulas, L., Psaras, I., and G. Pavlou,
              "Information Resilience through User-Assisted Caching in
              Disruptive Content-Centric Networks", 14th IFIP Networking
              Conference, Toulouse, France,
              DOI 10.1109/IFIPNetworking.2015.7145301, May 2015.

Top      Up      ToC       Page 36 
   [Tagger12] Tagger, B., et al., "Update on the Architecture and Report
              on Security Analysis", Deliverable 2.4, PURSUIT EU FP7
              project, April 2012.

   [Tourani16]
              Tourani, R., Mick, T., Misra, S., and G. Panwar,
              "Security, Privacy, and Access Control in Information-
              Centric Networking: A Survey", arXiv:1603.03409, March
              2016.

   [VoCCN]    Jacobson, V., et al., "VoCCN: Voice-over Content-Centric
              Networks", Proceedings of the 2009 workshop on Re-
              architecting the internet (ReArch '09),
              DOI 10.1145/1658978.1658980, 2009.

   [Watts98]  Watts, D. J. and S. H. Strogatz, "Collective dynamics of
              'small-world' networks", Nature, vol. 393, no. 6684, pp.
              440-442, DOI 10.1038/30918, April 1998.

   [Yu06]     Yu, H., Zheng, D., Zhao, B., and W. Zheng, "Understanding
              user behavior in large-scale video-on-demand systems", ACM
              SIGOPS Operating Systems Review - Proceedings of the 2006
              EuroSys conference, Vol. 40, Issue 4, pp. 333-344,
              DOI 10.1145/1218063.1217968, April 2006.

   [Zhang10a] Zhang, C., Dhungel, P., Wu, D., and K. Ross, "Unraveling
              the BitTorrent Ecosystem", IEEE Transactions on Parallel
              and Distributed Systems, vol. 22, issue 7, pp. 1164-1177,
              DOI 10.1109/TPDS.2010.123, 2010.

   [Zhang10b] Zhang, L., et al., "Named Data Networking (NDN) Project",
              NDN Technical Report NDN-0001, October 2010,
              <http://named-data.net/publications/techreports/>.

   [Zhou11]   Zhou, J., Li,  Y., Adhikari, K., and Z.-L. Zhang,
              "Counting YouTube videos via random prefix sampling",
              Proceedings of the 2011 ACM SIGCOMM conference on Internet
              measurement conference (IMC '11), Berlin, Germany,
              DOI 10.1145/2068816.2068851, November 2011.

Top      Up      ToC       Page 37 
Acknowledgments

   Konstantinos Katsaros contributed the updated text of Section 2.2
   along with an extensive set of references.

   Priya Mahadevan, Daniel Corujo, and Gareth Tyson contributed to a
   draft version of this document.

   This document has benefited from reviews, pointers to the growing ICN
   literature, suggestions, comments, and proposed text provided by the
   following members of the IRTF Information-Centric Networking Research
   Group (ICNRG), listed in alphabetical order: Marica Amadeo, Hitoshi
   Asaeda, E. Baccelli, Claudia Campolo, Christian Esteve Rothenberg,
   Suyong Eum, Nikos Fotiou, Dorothy Gellert, Luigi Alfredo Grieco,
   Myeong-Wuk Jang, Ren Jing, Will Liu, Antonella Molinaro, Luca
   Muscariello, Ioannis Psaras, Dario Rossi, Stefano Salsano, Damien
   Saucez, Dirk Trossen, Jianping Wang, Yuanzhe Xuan, and Xinwen Zhang.

   The IRSG review was provided by Aaron Falk.

Top      Up      ToC       Page 38 
Authors' Addresses

   Kostas Pentikousis (editor)
   Travelping
   Koernerstr. 7-10
   10785 Berlin
   Germany

   Email: k.pentikousis@travelping.com


   Borje Ohlman
   Ericsson Research
   S-16480 Stockholm
   Sweden

   Email: Borje.Ohlman@ericsson.com


   Elwyn Davies
   Trinity College Dublin/Folly Consulting Ltd
   Dublin, 2
   Ireland

   Email: davieseb@scss.tcd.ie


   Spiros Spirou
   Intracom Telecom
   19.7 km Markopoulou Avenue
   19002 Peania, Athens
   Greece

   Email: spis@intracom-telecom.com


   Gennaro Boggia
   Dept. of Electrical and Information Engineering
   Politecnico di Bari
   Via Orabona 4
   70125 Bari
   Italy

   Email: g.boggia@poliba.it