tech-invite   World Map     

IETF     RFCs     Groups     SIP     ABNFs    |    3GPP     Specs     Gloss.     Arch.     IMS     UICC    |    Misc.    |    search     info

RFC 7695

Proposed STD
Pages: 20
Top     in Index     Prev     Next
in Group Index     Prev in Group     Next in Group     Group: HOMENET

Distributed Prefix Assignment Algorithm

 


Top       ToC       Page 1 
Internet Engineering Task Force (IETF)                        P. Pfister
Request for Comments: 7695                                   B. Paterson
Category: Standards Track                                  Cisco Systems
ISSN: 2070-1721                                                 J. Arkko
                                                                Ericsson
                                                           November 2015


                Distributed Prefix Assignment Algorithm

Abstract

   This document specifies a distributed algorithm for dividing a set of
   prefixes in a manner that allows for automatic assignment of sub-
   prefixes that are unique and non-overlapping.  Used in conjunction
   with a protocol that provides flooding of information among a set of
   participating nodes, prefix configuration within a network may be
   automated.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc7695.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Top       Page 2 
Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Definitions . . . . . . . . . . . . . . . . . . . . . . . . .   3
     2.1.  Subroutine-Specific Terminology . . . . . . . . . . . . .   6
   3.  Applicability Statement . . . . . . . . . . . . . . . . . . .   7
   4.  Algorithm Specification . . . . . . . . . . . . . . . . . . .   9
     4.1.  Prefix Assignment Algorithm Subroutine  . . . . . . . . .   9
     4.2.  Overriding and Destroying Existing Assignments  . . . . .  12
     4.3.  Other Events  . . . . . . . . . . . . . . . . . . . . . .  13
   5.  Prefix Selection Considerations . . . . . . . . . . . . . . .  14
   6.  Implementation Capabilities and Node Behavior . . . . . . . .  16
   7.  Algorithm Parameters  . . . . . . . . . . . . . . . . . . . .  17
   8.  Security Considerations . . . . . . . . . . . . . . . . . . .  17
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  18
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .  18
     9.2.  Informative References  . . . . . . . . . . . . . . . . .  18
   Appendix A.  Static Configuration Example . . . . . . . . . . . .  19
   Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  20
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  20

1.  Introduction

   This document specifies a distributed algorithm for automatic prefix
   assignment.  The algorithm provides a generic alternative to
   centralized (human- or software-based) approaches for network prefix
   and address assignment.  Although it does not have to be configured
   to operate properly, it supports custom configuration by means of
   variable priority assignments, and can therefore be used in fully
   autonomic as well as configured networks.  This document focuses on
   the algorithm itself and therefore context-specific considerations
   (such as the process of selecting a prefix value and length when
   making a new assignment) are out of scope.

   The algorithm makes use of a flooding mechanism allowing
   participating nodes to advertise prefixes assigned to the links to
   which they are directly connected or for other purposes, e.g., for
   private assignment or prefix delegation.  Advertising a prefix
   therefore serves two purposes.  It is a claim that a prefix is in
   use, meaning that no other node may advertise an overlapping prefix
   (unless it has a greater priority).  And, it is a way for other nodes
   to know which prefixes have been assigned to the links to which they
   are directly connected.

Top      ToC       Page 3 
   The algorithm is given a set of delegated prefixes and ensures that
   the following assertions are satisfied after a finite convergence
   period:

   1.  At most one prefix from each delegated prefix is assigned to each
       link.

   2.  Assigned prefixes are non-overlapping (i.e., an assigned prefix
       never includes another assigned prefix).

   3.  Assigned prefixes do not change in the absence of topology or
       configuration changes.

   In the rest of this document, the two first conditions are referred
   to as the correctness conditions of the algorithm, while the third
   condition is referred to as its convergence condition.

   Each assignment has a priority specified by the node making the
   assignment, allowing for custom assignment policies.  When multiple
   nodes assign different prefixes from the same delegated prefix to the
   same link, or when multiple nodes assign overlapping prefixes (to the
   same link or to different links), the assignment with the greatest
   priority is kept and other assignments are removed.

   The prefix assignment algorithm requires that participating nodes
   share information through a flooding mechanism.  If the flooding
   mechanism ensures that all messages are propagated to all nodes
   within a given time window, the algorithm also ensures that all
   assigned prefixes used for networking operations (e.g., host
   configuration) remain unchanged, unless another node assigns an
   overlapping prefix with a higher assignment priority, or the topology
   changes and renumbering cannot be avoided.

2.  Definitions

   In this document, the key words "MUST", "MUST NOT", "REQUIRED",
   "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
   and "OPTIONAL" are to be interpreted as described in [RFC2119].

   This document makes use of the following terminology.  The terms
   defined here are ordered in such a way as to try to avoid forward
   references, and therefore are not sorted alphabetically.

   Node:   An entity executing the algorithm specified in this document
      and able to communicate with other Nodes using the Flooding
      Mechanism.

Top      ToC       Page 4 
   Flooding Mechanism:   A mechanism allowing participating Nodes to
      reliably share information with all other participating Nodes.

   Link:   An object to which the distributed algorithm will assign
      prefixes.  A Node may only assign prefixes to Links to which it is
      directly connected.  A Link is either Shared or Private.

   Shared Link:   A Link to which multiple Nodes may be connected.  Most
      of the time, a Shared Link is a multi-access link or point-to-
      point link, virtual or physical, requiring prefixes to be assigned
      to it.

   Private Link:   A Private Link is an abstract concept defined for the
      sake of this document.  It allows Nodes to make assignments for
      their private use or delegation.  For instance, every DHCPv6-PD
      [RFC3633] requesting router may be considered as a different
      Private Link.

   Delegated Prefix:   A prefix provided to the algorithm and used as a
      prefix pool for Assigned Prefixes.

   Node ID:   A value identifying a given participating Node.  The set
      of identifiers MUST be strictly and totally ordered (e.g., using
      the alphanumeric order).  The mechanism used to assign Node IDs,
      whether manual or automated, is out of scope for this document.

   Flooding Delay:   A value that MUST be provided by the Flooding
      Mechanism and SHOULD be a deterministic or likely upper bound on
      the information propagation delay among participating Nodes.

   Advertised Prefix:   A prefix advertised by another Node and
      delivered to the local Node by the Flooding Mechanism.  It has an
      Advertised Prefix Priority and, when assigned to a directly
      connected Shared Link, is associated with that Shared Link.

   Advertised Prefix Priority:   A value that defines the priority of an
      Advertised Prefix received from the Flooding Mechanism or a
      published Assigned Prefix.  Whenever multiple Advertised Prefixes
      are conflicting (i.e., overlapping or from the same Delegated
      Prefix and assigned to the same link), all Advertised Prefixes but
      the one with the greatest priority will eventually be removed.  In
      case of a tie, the assignment advertised by the Node with the
      greatest Node ID is kept, and others are removed.  In order to
      ensure convergence, the range of priority values MUST have an
      upper bound.

Top      ToC       Page 5 
   Assigned Prefix:   A prefix included in a Delegated Prefix and
      assigned to a Shared or Private Link.  It represents a local
      decision to assign a given prefix from a given Delegated Prefix to
      a given Link.  The algorithm ensures that there is never more than
      one Assigned Prefix per Delegated Prefix and Link pair.  When
      destroyed, an Assigned Prefix is set as not applied, ceases to be
      advertised, and is removed from the set of Assigned Prefixes.

   Applied (Assigned Prefix):   When an Assigned Prefix is applied, it
      MAY be used (e.g., for host configuration, routing protocol
      configuration, prefix delegation).  When not applied, it MUST NOT
      be used for any purpose outside of the prefix assignment
      algorithm.  Each Assigned Prefix is associated with a timer (Apply
      Timer) used to apply the Assigned Prefix.  An Assigned Prefix is
      unapplied when destroyed.

   Published (Assigned Prefix):   The Assigned Prefix is advertised
      through the Flooding Mechanism as assigned to its associated Link.
      A published Assigned Prefix MUST have an Advertised Prefix
      Priority.  It will appear as an Advertised Prefix to other Nodes,
      once received from the Flooding Mechanism.

   Destroy (an Assigned Prefix):   Local action of removing an Assigned
      Prefix from the set of Assigned Prefixes.  If applied, the prefix
      is unapplied.  If published, the prefix stops being advertised
      through the Flooding Mechanism.

   Prefix Adoption:   When an Advertised Prefix that does not conflict
      with any other Advertised Prefix or published Assigned Prefix
      stops being advertised, any other Node connected to the same Link
      may, after some random delay, start advertising the same prefix.
      This procedure is called adoption and provides seamless assignment
      transfer from a Node to another, e.g., in case of Node failure.

   Backoff Timer:   Every Delegated Prefix and Link pair is associated
      with a timer counting down to zero.  By delaying the creation of
      new Assigned Prefixes or the advertisement of adopted Assigned
      Prefixes by a random amount of time, it reduces the probability of
      colliding assignments made by multiple Nodes.

   Renumbering:   Event occurring when an Assigned Prefix that was
      applied is destroyed.  Renumbering is undesirable as it usually
      implies reconfiguring routers or hosts.

Top      ToC       Page 6 
2.1.  Subroutine-Specific Terminology

   In addition to the terms defined in Section 2, the subroutine
   specified in Section 4 makes use of the following terms.

   Current Assignment:   For a given Delegated Prefix and Link, the
      Current Assignment is the Assigned Prefix (if any) included in the
      Delegated Prefix and assigned to the given Link by the Node
      executing the algorithm.  At some point in time, the Current
      Assignment from different Nodes may differ, but the algorithm
      ensures that, eventually, all Nodes directly connected to a Shared
      Link have the same Current Assignment for any given Delegated
      Prefix.

   Precedence:   An Advertised Prefix takes precedence over an Assigned
      Prefix if and only if one of the following conditions is met:

      *  The Assigned Prefix is not published.

      *  The Assigned Prefix is published, and the Advertised Prefix
         Priority from the Advertised Prefix is strictly greater than
         the Advertised Prefix Priority from the Assigned Prefix.

      *  The Assigned Prefix is published, the priorities are identical,
         and the Node ID from the Node advertising the Advertised Prefix
         is strictly greater than the local Node ID.

   Best Assignment:   For a given Delegated Prefix and Link, the Best
      Assignment is computed as the unique Advertised Prefix (if any)
      that:

      *  Includes or is included in the Delegated Prefix (i.e., the
         Advertised Prefix is a sub-prefix of the Delegated Prefix, or
         the Delegated Prefix is a sub-prefix of the Advertised Prefix).

      *  Is assigned on the given Link.

      *  Has the greatest Advertised Prefix Priority among Advertised
         Prefixes fulfilling the two preceding conditions (and, in case
         of a tie, the prefix advertised by the Node with the greatest
         Node ID among all prefixes with greatest priority).

      *  Takes precedence over the Current Assignment associated with
         the same Link and Delegated Prefix (if any).

Top      ToC       Page 7 
   Valid (Assigned Prefix):   An Assigned Prefix is valid if and only if
      the following two conditions are met:

      *  No Advertised Prefix including or included in the Assigned
         Prefix takes precedence over the Assigned Prefix.

      *  No Advertised Prefix including or included in the same
         Delegated Prefix as the Assigned Prefix and assigned to the
         same Link takes precedence over the Assigned Prefix.

3.  Applicability Statement

   Although the algorithm was primarily designed as an autonomic prefix
   assignment tool for home networks, it is applicable to other areas.
   In particular, it can operate without any kind of configuration as
   well as use advanced prefix assignment rules.  Additionally, it can
   be applied to any address space and can be used to manage multiple
   address spaces simultaneously.  For instance, an implementation can
   make use of IPv4-mapped IPv6 addresses [RFC4291] in order to manage
   both IPv4 and IPv6 prefix assignment using a single prefix space.

   Each Node MUST have a set of non-overlapping Delegated Prefixes
   (i.e., that do not include each other).  This set MAY change over
   time and be different from one Node to another at some point, but
   Nodes MUST eventually have the same set of non-overlapping Delegated
   Prefixes.

   Given this set of non-overlapping Delegated Prefixes, Nodes may
   assign available prefixes from each Delegated Prefix to the Links
   they are directly connected to.  The algorithm ensures that at most
   one prefix from a given Delegated Prefix is assigned to any given
   Link.  Prefixes may also be assigned for private use.  For example,
   an assigned prefix may be delegated to some other entity that does
   not implement this algorithm [RFC3633], or associated with a high
   priority in order to prevent other nodes from assigning any
   overlapping prefix [RFC6603].

   The algorithm supports dynamically changing topologies and therefore
   will converge if the topology remains unmodified for a long enough
   period of time.  (That time depends on the Flooding Mechanism
   properties.)  Nevertheless, some topology changes may induce
   renumbering, while others do not.  In particular, Nodes joining the
   set of participating Nodes do not cause renumbering.  Similarly,
   Nodes leaving the network may be handled without renumbering by using
   the prefix adoption procedure.  On the other hand, Links that merge
   or split may break correctness conditions, and therefore cause
   renumbering.

Top      ToC       Page 8 
   All Nodes MUST run a common Flooding Mechanism in order to share
   published Assigned Prefixes.  The set of participating Nodes is
   defined as the set of Nodes participating in the Flooding Mechanism.

   The Flooding Mechanism MUST:

   o  Provide a way to flood Assigned Prefixes assigned to a directly
      connected Link along with their respective Advertised Prefix
      Priority and the Node ID of the Node that is advertising them.

   o  Specify whether an Advertised Prefix is assigned to a directly
      connected Shared Link, and if so, which one.  This information
      also needs to be updated in case of Links that merge or split.

   o  Provide a Flooding Delay value, which SHOULD represent a
      deterministic or likely upper bound on the information propagation
      delay among participating Nodes.  Whenever the Flooding Mechanism
      is unable to adhere to the provided Flooding Delay, renumbering
      may happen.  As such, a delay often depends on the size of the
      network, it MAY change over time and MAY be different from one
      Node to another.  Furthermore, the process of selecting this value
      is subject to a tradeoff between convergence speed and lower
      renumbering probability (e.g., the value 0 may be used when
      renumbering is harmless), and is therefore out of scope for this
      document.

   The algorithm ensures that whenever the Flooding Delay is provided
   and held, and in the absence of any topology change or Delegated
   Prefix removal, renumbering only happens when a Node deliberately
   overrides an existing assignment.  In the absence of such deliberate
   override, the algorithm converges within an absolute worst-case
   timespan of (2 * Flooding Delay * L) seconds, where L is the number
   of links.

   Each Node MUST have a Node ID.  In the situation where multiple nodes
   have the same Node ID, the algorithm will not suffer, assuming there
   are no colliding assignments.  However, in order for collisions to be
   resolved, that situation MUST be transient.

   Finally, leaving the Flooding Mechanism or Node ID assignment process
   unsecured makes the network vulnerable to denial-of-service attacks,
   as detailed in Section 8.  Additionally, as this algorithm requires
   all Nodes to know which Node has made which assignment, it may be
   unsuitable depending on privacy requirements among participating
   Nodes.

Top      ToC       Page 9 
4.  Algorithm Specification

   This section specifies the behavior of Nodes implementing the prefix
   assignment algorithm.  The terms 'Current Assignment', 'Precedence',
   'Best Assignment', and 'Valid' are used as defined in Section 2.1.

4.1.  Prefix Assignment Algorithm Subroutine

   This section specifies the prefix assignment algorithm subroutine.
   It is defined for a given Delegated Prefix and Link pair and takes a
   BackoffTriggered boolean as parameter (indicating whether the
   subroutine execution was triggered by the Backoff Timer or by another
   event).  The subroutine also makes use of the two following
   configuration parameters: ADOPT_MAX_DELAY and BACKOFF_MAX_DELAY,
   which are defined in Section 7.

   For a given Delegated Prefix and Link pair, the subroutine MUST be
   run with the BackoffTriggered boolean set to false whenever:

   o  An Advertised Prefix including or included in the considered
      Delegated Prefix is added or removed.

   o  An Assigned Prefix included in the considered Delegated Prefix and
      associated with a different Link than the considered Link was
      destroyed, while there is no Current Assignment associated with
      the given pair.  This case MAY be ignored if the creation of a new
      Assigned Prefix associated with the considered pair is not
      desired.

   o  The considered Delegated Prefix is added.

   o  The considered Link is added.

   o  The Node ID is modified.

   o  An Assigned Prefix included in the considered Delegated Prefix and
      associated with the considered Link is destroyed outside of the
      context of the subroutine, as specified in Section 4.2.

   Furthermore, for a given Delegated Prefix and Link pair, the
   subroutine MUST be run with the BackoffTriggered boolean set to true
   whenever:

   o  The Backoff Timer associated with the considered Delegated Prefix
   and Link pair fires while there is no Current Assignment associated
   with the given pair.

Top      ToC       Page 10 
   When such an event occurs, a Node MAY delay the execution of the
   subroutine instead of executing it immediately, e.g., while receiving
   an update from the Flooding Mechanism, or for security reasons (see
   Section 8).  Even if other events occur in the meantime, the
   subroutine MUST be run only once.  It is also assumed that if one of
   these events is the firing of the Backoff Timer while there is no
   Current Assignment associated with the given pair, the subroutine is
   executed with the BackoffTriggered boolean set to true.

   In order to execute the subroutine for a given Delegated Prefix and
   Link pair, first get the Current Assignment and compute the Best
   Assignment associated with the Delegated Prefix and Link pair, then
   execute the steps depending on the following cases:

   1.  If there is no Best Assignment and no Current Assignment: Decide
       whether the creation of a new assignment for the given Delegated
       Prefix and Link pair is desired. (As any result would be valid,
       the process of making this decision is out of scope for this
       document.) And, do the following:

       *  If it is not desired, stop the execution of the subroutine.

       *  Else if the Backoff Timer is running, stop the execution of
       the subroutine.

       *  Else if the BackoffTriggered boolean is set to false, set the
       Backoff Timer to some random delay between ADOPT_MAX_DELAY and
       BACKOFF_MAX_DELAY (see Section 7) and stop the execution of the
       subroutine.

       *  Else, continue the execution of the subroutine.

       Select a prefix for the new assignment (see Section 5 for
       guidance regarding prefix selection).  This prefix MUST be
       included in or be equal to the considered Delegated Prefix and
       MUST NOT include or be included in any Advertised Prefix.  If a
       suitable prefix is found, use it to create a new Assigned Prefix:

       *  Assigned to the considered Link.

       *  Set as not applied.

       *  The Apply Timer set to (2 * Flooding Delay).

       *  Published with some selected Advertised Prefix Priority.

Top      ToC       Page 11 
   2.  If there is a Best Assignment but no Current Assignment: First,
       check if the Best Assignment is equal to or included in the
       Delegated Prefix.  If not, stop the execution of the subroutine.
       Otherwise, cancel the Backoff Timer and use the prefix from the
       Best Assignment to create a new Assigned Prefix:

       *  Assigned to the considered Link.

       *  Set as not applied.

       *  With the Apply Timer set to (2 * Flooding Delay).

       *  Set as not published.

   3.  If there is a Current Assignment but no Best Assignment:

       *  If the Current Assignment is not valid, destroy it, and
          execute the subroutine again with the BackoffTriggered boolean
          set to false.

       *  If the Current Assignment is valid and published, stop the
          execution of the subroutine.

       *  If the Current Assignment is valid and not published, the Node
          MUST either:

          +  Adopt the prefix by canceling the Apply Timer and set the
             Backoff Timer to some random delay between 0 and
             ADOPT_MAX_DELAY (see Section 7).  This procedure is used to
             avoid renumbering when the Node advertising the prefix left
             the Shared Link, and it SHOULD therefore be preferred.

          +  Destroy it and go to case 1, allowing a different prefix to
             be assigned, or the prefix to be removed.  When the Current
             Assignment is applied, this causes renumbering.

   4.  If there is a Current Assignment and a Best Assignment:

       *  Cancel the Backoff Timer.

       *  If the two prefixes are identical, set the Current Assignment
          as not published.  If the Current Assignment is not applied
          and the Apply Timer is not set, set the Apply Timer to (2 *
          Flooding Delay).

       *  If the two prefixes are not identical, destroy the Current
          Assignment and go to case 2.

Top      ToC       Page 12 
   When the prefix assignment algorithm subroutine requires an
   assignment to be created or adopted, any Advertised Prefix Priority
   value can be used.  Other documents MAY provide restrictions over
   this value depending on the context in which the algorithm is
   operating or leave it as implementation specific.

4.2.  Overriding and Destroying Existing Assignments

   In addition to the behaviors specified in Section 4.1, the following
   procedures MAY be used in order to provide additional behavior
   options (Section 6).

   Overriding Existing Assignments:   For any given Link and Delegated
      Prefix, a Node MAY create a new Assigned Prefix using a chosen
      prefix and Advertised Prefix Priority such that:

      *  The chosen prefix is included in or is equal to the considered
         Delegated Prefix.

      *  The Current Assignment, if any, as well as all existing
         Assigned Prefixes that include or are included inside the
         chosen prefix are destroyed.

      *  It is not applied.

      *  The Apply Timer is set to (2 * Flooding Delay).

      *  It is published.

      *  The Advertised Prefix Priority is greater than the Advertised
         Prefix Priority from all Advertised Prefixes that include or
         are included in the chosen prefix.

      *  The Advertised Prefix Priority is greater than the Advertised
         Prefix Priority from all Advertised Prefixes that include or
         are included in the considered Delegated Prefix and are
         assigned to the considered Link.

      In order to ensure algorithm convergence:

      *  Such overriding assignments MUST NOT be created unless there
         was a change in the Node configuration, a Link was added, or an
         Advertised Prefix was added or removed.

      *  The chosen Advertised Prefix Priority for the new Assigned
         Prefix SHOULD be greater than all priorities from the destroyed
         Assigned Prefixes.  If not, simple topologies with only two
         Nodes may not converge.  Nodes that do not adhere to this rule

Top      ToC       Page 13 
         MUST implement a mechanism that detects if the distributed
         algorithm does not converge and, when this occurs, they MUST
         stop creating overriding Assigned Prefixes that do not adhere
         to this rule.  The specifications for such safety procedures
         are out of scope for this document.

   Removing an Assigned Prefix:   A Node MAY destroy any Assigned Prefix
      that is published.  Such an event reflects the desire of a Node to
      not assign a prefix from a given Delegated Prefix to a given Link
      anymore.  In order to ensure algorithm convergence, such a
      procedure MUST NOT be executed unless there was a change in the
      Node configuration.  Furthermore, whenever an Assigned Prefix is
      destroyed in this way, the prefix assignment algorithm subroutine
      MUST be run for the Delegated Prefix and Link pair associated with
      the destroyed Assigned Prefix.

   The two procedures specified in this section are OPTIONAL.  They
   could be used for various purposes, e.g., for providing custom prefix
   assignment configuration or reacting to prefix space exhaustion (by
   overriding short Assigned Prefixes and assigning longer ones).

4.3.  Other Events

   When the Apply Timer fires, the associated Assigned Prefix MUST be
   applied.

   When the Backoff Timer associated with a given Delegated Prefix and
   Link pair fires while there is a Current Assignment associated with
   the same pair, the Current Assignment MUST be published with some
   associated Advertised Prefix Priority and, if the prefix is not
   applied, the Apply Timer MUST be set to (2 * Flooding Delay).

   When a Delegated Prefix is removed from the set of Delegated Prefixes
   (e.g., when the Delegated Prefix expires), all Assigned Prefixes
   included in the removed Delegated Prefix MUST be destroyed.

   When one Delegated Prefix is replaced by another one that includes or
   is included in the deleted Delegated Prefix, all Assigned Prefixes
   that were included in the deleted Delegated Prefix but are not
   included in the added Delegated Prefix MUST be destroyed.  Others MAY
   be kept.

   When a Link is removed, all Assigned Prefixes assigned to that Link
   MUST be destroyed.

Top      ToC       Page 14 
5.  Prefix Selection Considerations

   When the prefix assignment algorithm subroutine specified in
   Section 4.1 requires a new prefix to be selected, the prefix MUST be
   selected either:

   o  Among prefixes included in the considered Delegated Prefix that
      were previously assigned and applied on the considered Link.  For
      that purpose, Applied Prefixes may be stored in stable storage
      along with their associated Link.

   o  Randomly, picked from a set of prefixes, where the set is of at
      least RANDOM_SET_SIZE (see Section 7).  The prefixes are those
      included in the considered Delegated Prefix and not including or
      included in any Assigned or Advertised Prefix.  If less than
      RANDOM_SET_SIZE candidates are found, the prefix MUST be picked
      among all candidates.

   o  Based on some custom selection process specified in the
      configuration.

   A simple implementation MAY randomly pick the prefix among all
   available prefixes, but this strategy is inefficient in terms of
   address space use as a few long prefixes may exhaust the pool of
   available short prefixes.

   The rest of this section describes a more efficient approach that MAY
   be applied any time a Node needs to pick a prefix for a new
   assignment.  The two following definitions are used:

   Available prefix:   The prefix of the form Prefix/PrefixLength is
      available if and only if it satisfies the three following
      conditions:

      *  It is included in the considered Delegated Prefix.

      *  It does not include and is not included in any Assigned or
         Advertised Prefix.

      *  It is equal to the considered Delegated Prefix or
         Prefix/(PrefixLength-1) includes an Assigned or Advertised
         Prefix.

   Candidate prefix:   A prefix of desired length that is included in or
      is equal to an available prefix.

   The procedure described in this section takes the three following
   criteria into account:

Top      ToC       Page 15 
   Prefix Stability:   In some cases, it is desirable that the selected
      prefix should remain the same across executions and reboots.  For
      this purpose, prefixes previously applied on the Link or
      pseudorandom prefixes generated based on Node- and Link-specific
      values may be considered.

   Randomness:   When no stored or pseudorandom prefix is chosen, a
      prefix may be randomly picked among RANDOM_SET_SIZE candidates of
      desired length.  If less than RANDOM_SET_SIZE candidates can be
      found, the prefix is picked among all candidates.

   Addressing-space usage efficiency:   In the process of assigning
      prefixes, a small set of badly chosen long prefixes may prevent
      any shorter prefix from being assigned.  For this reason, the set
      of RANDOM_SET_SIZE candidates is created from available prefixes
      with longest prefix lengths, and, in case of a tie, numerically
      small prefix values are preferred.

   When executing the procedure, do as follows:

   1.  For each prefix stored in stable storage, check if the prefix is
       included in or equal to an available prefix.  If so, pick that
       prefix and stop.

   2.  For each prefix length, count the number of available prefixes of
       the given length.

   3.  If the desired prefix length was not specified, select one.  The
       available prefixes count computed previously may be used to help
       pick a prefix length such that:

       *  There is at least one candidate prefix.

       *  The prefix length is chosen large enough to not exhaust the
          address space.

       Let N be the chosen prefix length.

   4.  Iterate over available prefixes starting with prefixes of length
       N down to length 0 and create a set of RANDOM_SET_SIZE candidate
       prefixes of length exactly N included in or equal to available
       prefixes.  The end goal here is to create a set of
       RANDOM_SET_SIZE candidate prefixes of length N included in a set
       of available prefixes of maximized prefix length.  In case of a
       tie, smaller prefix values (as defined by the bit-wise
       lexicographical order) are preferred.

Top      ToC       Page 16 
   5.  Generate a set of prefixes of desired length, which are
       pseudorandomly chosen based on Node- and Link-specific values.
       For each pseudorandom prefix, check if the prefix is equal to a
       candidate prefix.  If so, pick that prefix and stop.

   6.  Choose a random prefix from the set of selected candidates.

   The complexity of this procedure is equivalent to the complexity of
   iterating over available prefixes.  Such operation may be
   accomplished in linear time, e.g., by storing Advertised and Assigned
   Prefixes in a binary tree.

6.  Implementation Capabilities and Node Behavior

   Implementations of the prefix assignment algorithm may vary from very
   basic to highly customizable, enabling different types of fully
   interoperable behaviors.  The three following behaviors are given as
   examples:

   Listener:   The Node only acts upon assignments made by other Nodes,
      i.e, it never creates new assignments nor adopts existing ones.
      Such behavior does not require the implementation of the
      considerations specified in Section 4.2 or 5.  The Node never
      checks the validity of existing assignments, which makes this
      behavior particularly suited to lightweight devices that can rely
      on more capable neighbors to make assignments on directly
      connected Shared Links.

   Basic:   The Node is capable of assigning new prefixes or adopting
      prefixes that do not conflict with any other existing assignment.
      Such behavior does not require the implementation of the
      considerations specified in Section 4.2.  It is suited to
      situations where there is no preference over which prefix should
      be assigned to which Link, and there is no priority between
      different Links.

   Advanced:   The Node is capable of assigning new prefixes, adopting
      existing ones, making overriding assignments, and destroying
      existing ones.  Such behavior requires the implementation of the
      considerations specified in Sections 4.2 and 5.  It is suitable
      when the administrator desires some particular prefix to be
      assigned on a given Link, or some Link to be assigned prefixes
      with a greater priority when there are not enough prefixes
      available for all Links.

   Note that if all Nodes directly connected to some Link are listener
   Nodes or none of these Nodes are willing to make an assignment from a
   given Delegated Prefix to the given Link, no prefix from the given

Top      ToC       Page 17 
   Delegated Prefix will ever be assigned to the Link.  This situation
   may be detected by monitoring whether any prefix from a given
   Delegated Prefix has been assigned to the Link for longer than
   BACKOFF_MAX_DELAY plus the Flooding Delay.

7.  Algorithm Parameters

   This document does not provide values for ADOPT_MAX_DELAY,
   BACKOFF_MAX_DELAY, and RANDOM_SET_SIZE.  The algorithm ensures
   convergence and correctness for any chosen values, even when these
   are different from Node to Node.  They MAY be adjusted depending on
   the context, providing a tradeoff between convergence time, efficient
   addressing, control traffic (generated by the Flooding Mechanism),
   and collision probability.

   ADOPT_MAX_DELAY represents the maximum backoff time a Node may wait
   before adopting an assignment; BACKOFF_MAX_DELAY represents the
   maximum backoff time a Node may wait before making a new assignment.
   BACKOFF_MAX_DELAY MUST be greater than or equal to ADOPT_MAX_DELAY.
   The greater ADOPT_MAX_DELAY and (BACKOFF_MAX_DELAY -
   ADOPT_MAX_DELAY), the lower the collision probability and the lesser
   the amount of control traffic, but the greater the convergence time.

   RANDOM_SET_SIZE represents the desired size of the set from which a
   random prefix will be picked.  The greater RANDOM_SET_SIZE, the
   better the convergence time and the lower the collision probability,
   but the worse the addressing-space usage efficiency.

8.  Security Considerations

   The prefix assignment algorithm functions on top of two distinct
   mechanisms, the Flooding Mechanism and the Node ID assignment
   mechanism.

      An attacker able to publish Advertised Prefixes through the
      Flooding Mechanism may perform the following attacks:

      *  Publish a single overriding assignment for a whole Delegated
         Prefix or for the whole address space, thus preventing any Node
         from assigning prefixes to Links.

      *  Quickly publish and remove Advertised Prefixes, generating
         traffic at the Flooding Mechanism layer and causing multiple
         executions of the prefix assignment algorithm in all
         participating Nodes.

      *  Publish and remove Advertised Prefixes in order to prevent the
         convergence of the algorithm.

Top      ToC       Page 18 
      An attacker able to prevent other Nodes from accessing a portion
      or the whole set of Advertised Prefixes may compromise the
      correctness of the algorithm.

      An attacker able to cause repetitive Node ID changes may cause
      traffic to be generated in the Flooding Mechanism and multiple
      executions of the prefix assignment algorithm in all participating
      Nodes.

      An attacker able to publish Advertised Prefixes using a Node ID
      used by another Node may impede the ability to resolve prefix
      assignment collisions.

   Whenever the security of the Flooding Mechanism and Node ID
   assignment mechanism cannot be ensured, the convergence of the
   algorithm may be prevented.  In environments where such attacks may
   be performed, the execution of the prefix assignment algorithm
   subroutine SHOULD be rate limited, as specified in Section 4.1.

9.  References

9.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, DOI
              10.17487/RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

9.2.  Informative References

   [RFC3633]  Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic
              Host Configuration Protocol (DHCP) version 6", RFC 3633,
              DOI 10.17487/RFC3633, December 2003,
              <http://www.rfc-editor.org/info/rfc3633>.

   [RFC4291]  Hinden, R. and S. Deering, "IP Version 6 Addressing
              Architecture", RFC 4291, DOI 10.17487/RFC4291, February
              2006, <http://www.rfc-editor.org/info/rfc4291>.

   [RFC6603]  Korhonen, J., Ed., Savolainen, T., Krishnan, S., and O.
              Troan, "Prefix Exclude Option for DHCPv6-based Prefix
              Delegation", RFC 6603, DOI 10.17487/RFC6603, May 2012,
              <http://www.rfc-editor.org/info/rfc6603>.

Top      ToC       Page 19 
Appendix A.  Static Configuration Example

   This section describes an example of how custom configuration of the
   prefix assignment algorithm may be implemented.

   The Node configuration is specified as a finite set of rules.  A rule
   is defined as:

   o  A prefix to be used.

   o  A Link on which the prefix may be assigned.

   o  An Assigned Prefix Priority (the smallest possible Assigned Prefix
      Priority if the rule may not override other Assigned Prefixes).

   o  A rule priority (0 if the rule may not override existing
      Advertised Prefixes).

   In order to ensure the convergence of the algorithm, the Assigned
   Prefix Priority MUST be an increasing function (not necessarily
   strictly) of the configuration rule priority (i.e., the greater the
   configuration rule priority is, the greater the Assigned Prefix
   Priority must be).

   Each Assigned Prefix is associated with a rule priority.  Assigned
   Prefixes that are created as specified in Section 4.1 are given a
   rule priority of 0.

   Whenever the configuration is changed or the prefix assignment
   algorithm subroutine is run, for each Link/Delegated Prefix pair,
   look for the configuration rule with the greatest configuration rule
   priority such that:

   o  The prefix specified in the configuration rule is included in the
      considered Delegated Prefix.

   o  The Link specified in the configuration rule is the considered
      Link.

   o  All the Assigned Prefixes that would need to be destroyed in case
      a new Assigned Prefix is created from that configuration rule (as
      specified in Section 4.2) have an associated rule priority that is
      strictly lower than the one of the considered configuration rule.

   o  The assignment would be valid when published with an Advertised
      Prefix Priority equal to the one specified in the configuration
      rule.

Top      ToC       Page 20 
   If a rule is found, a new Assigned Prefix is created based on that
   rule as specified in Section 4.2.  The new Assigned Prefix is
   associated with the Advertised Prefix Priority and the rule priority
   specified in the considered configuration rule.

   Note that the use of rule priorities ensures the convergence of the
   algorithm.

Acknowledgments

   The authors would like to thank those who participated in the
   development of draft versions of this document as well as the present
   document.  In particular, the authors would like to thank Tim Chown,
   Fred Baker, Mark Townsley, Lorenzo Colitti, Ole Troan, Ray Bellis,
   Markus Stenberg, Wassim Haddad, Joel Halpern, Samita Chakrabarti,
   Michael Richardson, Anders Brandt, Erik Nordmark, Laurent Toutain,
   Ralph Droms, Acee Lindem, Steven Barth, and Juliusz Chroboczek for
   interesting discussions and document review.

Authors' Addresses

   Pierre Pfister
   Cisco Systems
   Paris
   France

   Email: pierre.pfister@darou.fr


   Benjamin Paterson
   Cisco Systems
   Paris
   France

   Email: paterson.b@gmail.com


   Jari Arkko
   Ericsson
   Jorvas  02420
   Finland

   Email: jari.arkko@piuha.net