Tech-invite3GPPspaceIETFspace
959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 7292

PKCS #12: Personal Information Exchange Syntax v1.1

Pages: 29
Informational
Errata

Top   ToC   RFC7292 - Page 1
Internet Engineering Task Force (IETF)                  K. Moriarty, Ed.
Request for Comments: 7292                                           EMC
Category: Informational                                       M. Nystrom
ISSN: 2070-1721                                    Microsoft Corporation
                                                            S. Parkinson
                                                                A. Rusch
                                                                M. Scott
                                                                     RSA
                                                               July 2014


          PKCS #12: Personal Information Exchange Syntax v1.1

Abstract

PKCS #12 v1.1 describes a transfer syntax for personal identity information, including private keys, certificates, miscellaneous secrets, and extensions. Machines, applications, browsers, Internet kiosks, and so on, that support this standard will allow a user to import, export, and exercise a single set of personal identity information. This standard supports direct transfer of personal information under several privacy and integrity modes. This document represents a republication of PKCS #12 v1.1 from RSA Laboratories' Public Key Cryptography Standard (PKCS) series. By publishing this RFC, change control is transferred to the IETF. IESG Note The IESG thanks RSA Laboratories for transferring change control to the IETF. Enhancements to this specification that preserve backward compatibility are expected in an upcoming IETF Standards Track document.
Top   ToC   RFC7292 - Page 2
Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Not all documents
   approved by the IESG are a candidate for any level of Internet
   Standard; see Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc7292.

Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
Top   ToC   RFC7292 - Page 3

Table of Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1. Changes from PKCS #12 Version 1 . . . . . . . . . . . . . 4 2. Definitions and Notation . . . . . . . . . . . . . . . . . . 5 3. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1. Exchange Modes . . . . . . . . . . . . . . . . . . . . . 7 3.2. Mode Choice Policies . . . . . . . . . . . . . . . . . . 8 3.3. Trusted Public Keys . . . . . . . . . . . . . . . . . . . 8 3.4. The AuthenticatedSafe . . . . . . . . . . . . . . . . . . 9 4. PFX PDU Syntax . . . . . . . . . . . . . . . . . . . . . . . 10 4.1. The AuthenticatedSafe Type . . . . . . . . . . . . . . . 11 4.2. The SafeBag Type . . . . . . . . . . . . . . . . . . . . 12 4.2.1. The KeyBag Type . . . . . . . . . . . . . . . . . . . 13 4.2.2. The PKCS8ShroudedKeyBag Type . . . . . . . . . . . . 13 4.2.3. The CertBag Type . . . . . . . . . . . . . . . . . . 13 4.2.4. The CRLBag Type . . . . . . . . . . . . . . . . . . . 14 4.2.5. The SecretBag Type . . . . . . . . . . . . . . . . . 14 4.2.6. The SafeContents Type . . . . . . . . . . . . . . . . 14 5. Using PFX PDUs . . . . . . . . . . . . . . . . . . . . . . . 15 5.1. Creating PFX PDUs . . . . . . . . . . . . . . . . . . . . 15 5.2. Importing Keys, etc., from a PFX PDU . . . . . . . . . . 16 6. Security Considerations . . . . . . . . . . . . . . . . . . . 16 7. Normative References . . . . . . . . . . . . . . . . . . . . 17 Appendix A. Message Authentication Codes (MACs) . . . . . . . . 19 Appendix B. Deriving Keys and IVs from Passwords and Salt . . . 19 B.1. Password Formatting . . . . . . . . . . . . . . . . . . . 19 B.2. General Method . . . . . . . . . . . . . . . . . . . . . 20 B.3. More on the ID Byte . . . . . . . . . . . . . . . . . . . 22 B.4. Keys for Password Integrity Mode . . . . . . . . . . . . 22 Appendix C. Keys and IVs for Password Privacy Mode . . . . . . . 22 Appendix D. ASN.1 Module . . . . . . . . . . . . . . . . . . . . 24 Appendix E. Intellectual Property Considerations . . . . . . . . 28 Appendix F. Acknowledgments . . . . . . . . . . . . . . . . . . 28 Appendix G. About PKCS . . . . . . . . . . . . . . . . . . . . . 28
Top   ToC   RFC7292 - Page 4

1. Introduction

This document represents a republication of PKCS #12 v1.1 from RSA Laboratories' Public Key Cryptography Standard (PKCS) series. By publishing this RFC, change control is transferred to the IETF. RSA and its parent company EMC reserve the right to continue publishing and distributing PKCS #12 v1.1 and its predecessors. The body of this document, except for the Security Considerations section, is taken directly from the PKCS #12 v1.1 specification. The list of references and the in-line cites have been updated or added where appropriate to cite the most current documents in addition to those current at the original publication of PKCS #12 v1.1. This standard describes a transfer syntax for personal identity information, including private keys, certificates, miscellaneous secrets, and extensions. Machines, applications, browsers, Internet kiosks, and so on, that support this standard will allow a user to import, export, and exercise a single set of personal identity information. This standard supports direct transfer of personal information under several privacy and integrity modes. The most secure of the privacy and integrity modes require the source and destination platforms to have trusted public/private key pairs usable for digital signatures and encryption, respectively. The standard also supports lower- security, password-based privacy and integrity modes for those cases where trusted public/private key pairs are not available. This standard should be amenable to both software and hardware implementations. Hardware implementations offer physical security in tamper-resistant tokens such as smart cards and Personal Computer Memory Card International Association (PCMCIA) devices. This standard can be viewed as building on PKCS #8 [15] [24] by including essential but ancillary identity information along with private keys and by instituting higher security through public-key privacy and integrity modes.

1.1. Changes from PKCS #12 Version 1

This document transfers PKCS #12 [16] into the IETF and includes some minor changes from the authors for this submission. o Addition of hash algorithms. o Incorporation of Technical Corrigendum #1, which makes some minor corrections to the ASN.1 syntax.
Top   ToC   RFC7292 - Page 5
   o  Removed (from the ASN.1 syntax) 1024 as an example of the
      iteration count.

   o  Addition of a recommendation that the technique in Appendix B no
      longer be used for a specific mode (password privacy mode) and
      that techniques from PKCS#5 v2.1 be used instead.

   o  Addition of comments and minor corrections to the ASN.1 module in
      Appendix C.

   o  Removal of the export regulations discussion in the former
      Appendix D.

   o  Replacement of RSA with EMC in the "Intellectual Property
      Considerations".

   o  Many changes and additions to the references.

   o  A reference was added to NIST SP 800-132 for its recommendations
      on selection of the iteration count value for password integrity
      (part of dictionary-attack resistance).

   o  Comment included on acronym expansion of PFX: The acronym is
      sometimes expanded as Personal Information Exchange.

   o  In Appendix B, the phrase "no longer recommended" was changed to
      "not recommended" in the following sentence to address a question
      and make it clear the method was not recommended: "Note that this
      method for password privacy mode is no longer recommended."

2. Definitions and Notation

AlgorithmIdentifier: An ASN.1 type that identifies an algorithm (by an object identifier) and any associated parameters. This type is defined in [8]. ASN.1: Abstract Syntax Notation One, as defined in [2], [3], [4], and [5]. Attribute: An ASN.1 type that identifies an attribute type (by an object identifier) and an associated attribute value. The ASN.1 type Attribute is defined in [7]. Certificate: A digitally signed data unit binding a public key to identity information. A specific format for identity certificates is defined in [8]. Another format is described in [17].
Top   ToC   RFC7292 - Page 6
   Certificate Revocation List (CRL):  A digitally signed list of
      certificates that should no longer be honored, having been revoked
      by the issuers or a higher authority.  One format for CRLs is
      defined in [8].

   ContentInfo:  An ASN.1 type used to hold data that may have been
      cryptographically protected.  This type is defined in [21] and
      [14].

   DER:  Distinguished Encoding Rules, as defined in [6].

   Destination platform:  The ultimate, final target platform for the
      personal information originating from the source platform.  Even
      though certain information may be transported from the destination
      platform to the source platform, the ultimate target for personal
      information is always called the destination platform.

   DigestInfo:  An ASN.1 type used to hold a message digest.  This type
      is defined in [21] and [14].

   Encryption Key Pair (DestEncK):  A public/private key pair used for
      the public-key privacy mode of this standard.  The public half is
      called PDestEncK (TPDestEncK when emphasizing that the public key
      is "trusted"), and the private half is called VDestEncK.

   Export time:  The time that a user reads personal information from a
      source platform and transforms the information into an
      interoperable, secure Protocol Data Unit (PDU).

   Import time:  The time that a user writes personal information from a
      Safe PDU to a destination platform.

   Message Authentication Code (MAC):  A type of collision-resistant,
      "unpredictable" function of a message and a secret key.  MACs are
      used for data authentication and are akin to secret-key digital
      signatures in many respects.

   Object Identifier:  A sequence of integers that uniquely identifies
      an associated data object in a global name space administrated by
      a hierarchy of naming authorities.  This is a primitive data type
      in ASN.1.

   PFX:  The top-level exchange PDU defined in this standard.  The
      acronym is sometimes expanded as Personal Information Exchange.
Top   ToC   RFC7292 - Page 7
   Platform:  A combination of machine, operating system, and
      applications software within which the user exercises personal
      identity.  An application, in this context, is software that uses
      personal information.  Two platforms differ if their machine types
      differ or if their applications software differs.  There is at
      least one platform per user in multi-user systems.

   Protocol Data Unit (PDU):  A sequence of bits in machine-independent
      format constituting a message in a protocol.

   Shrouding:  Encryption as applied to private keys, possibly in
      concert with a policy that prevents the plaintext of the key from
      ever being visible beyond a certain, well-defined interface.

   Signature Key Pair (SrcSigK):  A platform-specific signature key pair
      used for the public-key integrity mode of this standard.  The
      public half is called PSrcSigK (TPSrcSigK when emphasizing that
      the public key is "trusted"), and the private half is called
      VSrcSigK.

   Source platform:  The origin platform of the personal information
      ultimately intended for the destination platform.  Even though
      certain information may be transported from the destination
      platform to the source platform, the platform that is the origin
      of personal information is always called the source platform.

3. Overview

3.1. Exchange Modes

There are four combinations of privacy modes and integrity modes. The privacy modes use encryption to protect personal information from exposure, and the integrity modes protect personal information from tampering. Without protection from tampering, an adversary could conceivably substitute invalid information for the user's personal information without the user being aware of the substitution. The following are the privacy modes: o Public-key privacy mode: Personal information is enveloped on the source platform using a trusted encryption public key of a known destination platform (see Section 3.3). The envelope is opened with the corresponding private key.
Top   ToC   RFC7292 - Page 8
   o  Password privacy mode: Personal information is encrypted with a
      symmetric key derived from a user name and a privacy password, as
      in [22] and [13].  If password integrity mode is used as well, the
      privacy password and the integrity password may or may not be the
      same.

   The following are the integrity modes:

   o  Public-key integrity mode: Integrity is guaranteed through a
      digital signature on the contents of the PFX PDU, which is
      produced using the source platform's private signature key.  The
      signature is verified on the destination platform by using the
      corresponding public key (see Section 3.4).

   o  Password integrity mode: Integrity is guaranteed through a Message
      Authentication Code (MAC) derived from a secret integrity
      password.  If password privacy mode is used as well, the privacy
      password and the integrity password may or may not be the same.

3.2. Mode Choice Policies

All combinations of the privacy and integrity modes are permitted in this standard. Of course, good security policy suggests that certain practices be avoided, e.g., it can be unwise to transport private keys without physical protection when using password privacy mode or when using public-key privacy mode with weak symmetric encryption. In general, the public-key modes for both privacy and integrity are preferable to the password modes (from a security viewpoint). However, it is not always possible to use the public-key modes. For example, it may not be known at export time what the destination platform is; if this is the case, then the use of the public-key privacy mode is precluded.

3.3. Trusted Public Keys

Asymmetric key pairs may be used in this standard in two ways: public-key privacy mode and public-key integrity mode. For public- key privacy mode, an encryption key pair is required; for public-key integrity mode, a signature key pair is required. It may be appropriate for the keys discussed in this section to be platform-specific keys dedicated solely for the purpose of transporting a user's personal information. Whether or not that is the case, though, the keys discussed here should not be confused with the user's personal keys that the user wishes to transport from one platform to another. (These latter keys are stored within the PDU.)
Top   ToC   RFC7292 - Page 9
   For public-key privacy mode, the private key from the encryption key
   pair is kept on the destination platform, where it is ultimately used
   to open a private envelope.  The corresponding trusted public key is
   called TPDestEncK.

   For public-key integrity mode, the private key from the signature
   pair is kept on the source platform, where it is used to sign
   personal information.  The corresponding trusted public key is called
   TPSrcSigK.

   For both uses of public/private key pairs, the public key from the
   key pair must be transported to the other platform such that it is
   trusted to have originated at the correct platform.  Judging whether
   or not a public key is trusted in this sense must ultimately be left
   to the user.  There are a variety of methods for ensuring that a
   public key is trusted.

   The processes of imbuing keys with trust and of verifying
   trustworthiness of keys are not discussed further in this document.
   Whenever asymmetric keys are discussed in what follows, the public
   keys are assumed to be trusted.

3.4. The AuthenticatedSafe

Each compliant platform shall be able to import and export AuthenticatedSafe PDUs wrapped in PFX PDUs. For integrity, the AuthenticatedSafe is either signed (if public-key integrity mode is used) or MACed (if password integrity mode is used) to produce a PFX PDU. If the AuthenticatedSafe is signed, then it is accompanied by a digital signature, which was produced on the source platform with a private signature key, VSrcSigK, corresponding to a trusted public signature key, TPSrcSigK. TPSrcSigK must accompany the PFX to the destination platform, where the user can verify the trust in the key and can verify the signature on the AuthenticatedSafe. If the AuthenticatedSafe is MACed, then it is accompanied by a MAC computed from a secret integrity password, salt bits, an iteration count, and the contents of the AuthenticatedSafe. The AuthenticatedSafe itself consists of a sequence of ContentInfo values, some of which may consist of plaintext (data), and others that may either be enveloped (if public-key privacy mode is used) or encrypted (if password privacy mode is used). If the contents are enveloped, then they are encrypted with a symmetric cipher under a freshly generated key, which is in turn encrypted with RSA asymmetric encryption. The RSA public key used to encrypt the symmetric key is called TPDestEncK and corresponds to an RSA private key, VDestEncK, on the destination platform. TPDestEncK needs to be trusted by the
Top   ToC   RFC7292 - Page 10
   user when it is used at export time.  If the contents are encrypted,
   then they are encrypted with a symmetric cipher under a key derived
   from a secret privacy password, salt bits, and an iteration counter.

   Each ContentInfo contains an arbitrary collection of private keys,
   PKCS #8-shrouded private keys, certificates, CRLs, or opaque data
   objects, at the user's discretion, stored in values of type
   SafeContents.

   The raison d'etre for the unencrypted option is that some governments
   restrict certain uses of cryptography.  Having several parts in an
   AuthenticatedSafe keeps implementers' options open.  For example, it
   may be the case that strong cryptography can be used to make PKCS
   #8-shrouded keys, but then these shrouded keys should not be further
   encrypted, because super-encryption can limit a product's
   exportability.  The multi-part AuthenticatedSafe design permits this
   possibility.

   Around the AuthenticatedSafe is the integrity-mode wrapper, which
   protects the entire contents of the AuthenticatedSafe (including
   unencrypted parts, if they are present).  This is the reverse of the
   wrapping order in many protocols, in which privacy is the outermost
   protection.  This latter, more-common wrapping order avoids
   signatures on encrypted data, which are undesirable under certain
   circumstances; however, these circumstances do not apply to this
   document, and it is therefore preferable to protect the integrity of
   as much information as possible.

4. PFX PDU Syntax

This format corresponds to the data model presented above, with wrappers for privacy and integrity. This section makes free reference to PKCS #7 [14] [21] and assumes the reader is familiar with terms defined in that document. All modes of direct exchange use the same PDU format. ASN.1 and BER- encoding ensure platform independence. This standard has one ASN.1 export: PFX. This is the outer integrity wrapper. Instances of PFX contain: 1. A version indicator. The version shall be v3 for this version of this document. 2. A PKCS #7 ContentInfo, whose contentType is signedData in public- key integrity mode and data in password integrity mode.
Top   ToC   RFC7292 - Page 11
   3.  An optional instance of MacData, present only in password
       integrity.  This object, if present, contains a PKCS #7
       DigestInfo, which holds the MAC value, a macSalt, and an
       iterationCount.  As described in Appendix B, the MAC key is
       derived from the password, the macSalt, and the iterationCount;
       as described in Section 5, the MAC is computed from the authSafe
       value and the MAC key via HMAC [11] [20].  The password and the
       MAC key are not actually present anywhere in the PFX.  The salt
       and (to a certain extent) the iteration count thwarts dictionary
       attacks against the integrity password.  See NIST Special
       Publication 800-132 [12] about how to choose a reasonable value
       for the iteration count.

   PFX ::= SEQUENCE {
       version     INTEGER {v3(3)}(v3,...),
       authSafe    ContentInfo,
       macData     MacData OPTIONAL
   }

   MacData ::= SEQUENCE {
       mac         DigestInfo,
       macSalt     OCTET STRING,
       iterations  INTEGER DEFAULT 1
       -- Note: The default is for historical reasons and its
       --       use is deprecated.
   }

4.1. The AuthenticatedSafe Type

As mentioned, the contentType field of authSafe shall be of type data or signedData. The content field of the authSafe shall, either directly (data case) or indirectly (signedData case), contain a BER- encoded value of type AuthenticatedSafe. AuthenticatedSafe ::= SEQUENCE OF ContentInfo -- Data if unencrypted -- EncryptedData if password-encrypted -- EnvelopedData if public key-encrypted An AuthenticatedSafe contains a sequence of ContentInfo values. The content field of these ContentInfo values contains either plaintext, encrypted, or enveloped data. In the case of encrypted or enveloped data, the plaintext of the data holds the BER-encoding of an instance of SafeContents. Section 5.1 of this document describes the construction of values of type AuthenticatedSafe in more detail.
Top   ToC   RFC7292 - Page 12

4.2. The SafeBag Type

The SafeContents type is made up of SafeBags. Each SafeBag holds one piece of information -- a key, a certificate, etc. -- which is identified by an object identifier. SafeContents ::= SEQUENCE OF SafeBag SafeBag ::= SEQUENCE { bagId BAG-TYPE.&id ({PKCS12BagSet}) bagValue [0] EXPLICIT BAG-TYPE.&Type({PKCS12BagSet}{@bagId}), bagAttributes SET OF PKCS12Attribute OPTIONAL } PKCS12Attribute ::= SEQUENCE { attrId ATTRIBUTE.&id ({PKCS12AttrSet}), attrValues SET OF ATTRIBUTE.&Type ({PKCS12AttrSet}{@attrId}) } -- This type is compatible with the X.500 type 'Attribute' PKCS12AttrSet ATTRIBUTE ::= { friendlyName | -- from PKCS #9 [23] localKeyId, -- from PKCS #9 ... -- Other attributes are allowed } The optional bagAttributes field allows users to assign nicknames and identifiers to keys, etc., and permits visual tools to display meaningful strings of some sort to the user. Six types of SafeBags are defined in this version of this document: bagtypes OBJECT IDENTIFIER ::= {pkcs-12 10 1} BAG-TYPE ::= TYPE-IDENTIFIER keyBag BAG-TYPE ::= {KeyBag IDENTIFIED BY {bagtypes 1}} pkcs8ShroudedKeyBag BAG-TYPE ::= {PKCS8ShroudedKeyBag IDENTIFIED BY {bagtypes 2}} certBag BAG-TYPE ::= {CertBag IDENTIFIED BY {bagtypes 3}} crlBag BAG-TYPE ::= {CRLBag IDENTIFIED BY {bagtypes 4}} secretBag BAG-TYPE ::= {SecretBag IDENTIFIED BY {bagtypes 5}} safeContentsBag BAG-TYPE ::= {SafeContents IDENTIFIED BY {bagtypes 6}}
Top   ToC   RFC7292 - Page 13
   PKCS12BagSet BAG-TYPE ::= {
       keyBag |
       pkcs8ShroudedKeyBag |
       certBag |
       crlBag |
       secretBag |
       safeContentsBag,
       ... -- For future extensions
   }

   As new bag types become recognized in future versions of this
   standard, the PKCS12BagSet may be extended.

4.2.1. The KeyBag Type

A KeyBag is a PKCS #8 PrivateKeyInfo. Note that a KeyBag contains only one private key. KeyBag ::= PrivateKeyInfo

4.2.2. The PKCS8ShroudedKeyBag Type

A PKCS8ShroudedKeyBag holds a private key, which has been shrouded in accordance with PKCS #8. Note that a PKCS8ShroudedKeyBag holds only one shrouded private key. PKCS8ShroudedKeyBag ::= EncryptedPrivateKeyInfo

4.2.3. The CertBag Type

A CertBag contains a certificate of a certain type. Object identifiers are used to distinguish between different certificate types. CertBag ::= SEQUENCE { certId BAG-TYPE.&id ({CertTypes}), certValue [0] EXPLICIT BAG-TYPE.&Type ({CertTypes}{@certId}) } x509Certificate BAG-TYPE ::= {OCTET STRING IDENTIFIED BY {certTypes 1}} -- DER-encoded X.509 certificate stored in OCTET STRING sdsiCertificate BAG-TYPE ::= {IA5String IDENTIFIED BY {certTypes 2}} -- Base64-encoded SDSI certificate stored in IA5String CertTypes BAG-TYPE ::= { x509Certificate |
Top   ToC   RFC7292 - Page 14
       sdsiCertificate,
       ... -- For future extensions
   }

4.2.4. The CRLBag Type

A CRLBag contains a Certificate Revocation List (CRL) of a certain type. Object identifiers are used to distinguish between different CRL types. CRLBag ::= SEQUENCE { crlId BAG-TYPE.&id ({CRLTypes}), crlValue [0] EXPLICIT BAG-TYPE.&Type ({CRLTypes}{@crlId}) } x509CRL BAG-TYPE ::= {OCTET STRING IDENTIFIED BY {crlTypes 1}} -- DER-encoded X.509 CRL stored in OCTET STRING CRLTypes BAG-TYPE ::= { x509CRL, ... -- For future extensions }

4.2.5. The SecretBag Type

Each of the user's miscellaneous personal secrets is contained in an instance of SecretBag, which holds an object identifier-dependent value. Note that a SecretBag contains only one secret. SecretBag ::= SEQUENCE { secretTypeId BAG-TYPE.&id ({SecretTypes}), secretValue [0] EXPLICIT BAG-TYPE.&Type ({SecretTypes} {@secretTypeId}) } SecretTypes BAG-TYPE ::= { ... -- For future extensions } Implementers can add values to this set at their own discretion.

4.2.6. The SafeContents Type

The sixth type of bag that can be held in a SafeBag is a SafeContents. This recursive structure allows for arbitrary nesting of multiple KeyBags, PKCS8ShroudedKeyBags, CertBags, CRLBags, and SecretBags within the top-level SafeContents.
Top   ToC   RFC7292 - Page 15

5. Using PFX PDUs

This section describes the creation and usage of PFX PDUs.

5.1. Creating PFX PDUs

The steps for creating PFX PDUs are as follows. 1. It is somewhat clear from the ASN.1 how to make a number of instances of SafeContents, each containing a number of (possibly nested) instances of SafeBag. Let us assume, therefore, a number of instances SC_1, SC_2,..., SC_n of SafeContents. Note that there can be a more or less arbitrary number of instances of SafeContents in a PFX PDU. As will be seen in step 2, each instance can be encrypted (or not) separately. 2. For each SCI, depending on the chosen encryption option, A. If SC_i is not to be encrypted, make a ContentInfo CI_i holding content type Data. The contents of the Data OCTET STRING shall be a BER-encoding of SC_i (including tag, length, and value octets). B. If SC_i is to be encrypted with a password, make a ContentInfo CI_i of type EncryptedData. The encryptedContentInfo field of CI_i has its contentType field set to data and its encryptedContent field set to the encryption of the BER-encoding of SC_i (note that the tag and length octets shall be present). C. If SC_i is to be encrypted with a public key, make a ContentInfo CI_i of type EnvelopedData in essentially the same fashion as the EncryptedData ContentInfo was made in B. 3. Make an instance of AuthenticatedSafe by stringing together the CI_i's in a SEQUENCE. 4. Make a ContentInfo T holding content type Data. The contents of the Data OCTET STRING shall be a BER-encoding of the AuthenticatedSafe value (including tag, length, and value octets). 5. For integrity protection, A. If the PFX PDU is to be authenticated with a digital signature, make a ContentInfo C of type SignedData. The contentInfo field of the SignedData in C has T in it. C is the ContentInfo in the top-level PFX structure.
Top   ToC   RFC7292 - Page 16
       B.  If the PFX PDU is to be authenticated with HMAC, then an HMAC
           with SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224,
           or SHA-512/256 is computed on the contents of the Data in T
           (i.e., excluding the OCTET STRING tag and length bytes).
           This is exactly what would be initially digested in step 5A
           if public-key authentication were being used.

5.2. Importing Keys, etc., from a PFX PDU

Importation from a PFX is accomplished essentially by reversing the procedure for creating a PFX. In general, when an application imports keys, etc., from a PFX, it should ignore any object identifiers that it is not familiar with. At times, it may be appropriate to alert the user to the presence of such object identifiers. Special care may be taken by the application when importing an item in the PFX would require overwriting an item that already exists locally. The behavior of the application when such an item is encountered may depend on what the item is (i.e., it may be that a PKCS #8-shrouded private key and a CRL should be treated differently here). Appropriate behavior may be to ask the user what action should be taken for this item.

6. Security Considerations

When using passwords in privacy or integrity mode, it needs to be considered that password-based cryptography is generally limited in the security that it can provide, particularly for methods such as those defined in this document where off-line password search is possible. While the use of salt and iteration count can increase the complexity of attack, it is essential that passwords are selected well and that relevant guidelines (e.g., NIST SP 800-61-1) are taken into account. It is also important that passwords be protected well if stored. When choosing a salt value in password privacy or integrity mode, the recommendations in Section 4 of PKCS #5 2.1 [13] [22] should be taken into account. Ideally, the salt is as long as the output of the hash function being used and consists of randomly generated data.
Top   ToC   RFC7292 - Page 17

7. Normative References

[1] Dobbertin, H., "The status of MD5 after a recent attack.", CryptoBytes Vol. 2, #2, 1996. [2] ISO/IEC, "Information technology -- Abstract Syntax Notation One (ASN.1) -- Specification of basic notation", ISO/IEC 8824-1:2008, 2008. [3] ISO/IEC, "Information technology -- Abstract Syntax Notation One (ASN.1) -- Information object specification", ISO/IEC 8824-2:2008, 2008. [4] ISO/IEC, "Information technology -- Abstract Syntax Notation One (ASN.1) -- Constraint specification", ISO/IEC 88247-3:2008, 2008. [5] ISO/IEC, "Information technology -- Abstract Syntax Notation One (ASN.1) -- Parameterization of ASN.1 specifications", ISO/IEC 8824-4:2008, 2008. [6] ISO/IEC, "Information Technology - ASN.1 Encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished Encoding Rules", ISO/IEC 8825-1:2008, 2008. [7] ISO/IEC, "Information technology -- Open Systems Interconnection -- The Directory: Models", ISO/IEC 9594-2:1997, 1997. [8] ISO/IEC, "Information technology -- Open Systems Interconnection -- The Directory: Authentication Framework", ISO/IEC 9594-8:1997, 1997. [9] Microsoft, "PFX: Personal Exchange Syntax and Protocol Standard", ISO/IEC Version 0.020, January 1997. [10] National Institute of Standards and Technology (NIST), "Secure Hash Standard", FIPS Publication 180-4, March 2012. [11] National Institute of Standards and Technology (NIST), "The Keyed-Hash Message Authentication Code (HMAC)", FIPS Publication 198-1, July 2008. [12] National Institute of Standards and Technology (NIST), "The Recommendation for Password-Based Key Derivation, Part 1: Storage Applications", NIST Special Publication 800-132, December 2010.
Top   ToC   RFC7292 - Page 18
   [13]  RSA Laboratories, "PKCS #5: Password-Based Encryption
         Standard", PKCS Version 2.1, October 2012.

   [14]  RSA Laboratories, "PKCS #7: Cryptographic Message Syntax
         Standard", PKCS Version 1.5, November 1993.

   [15]  RSA Laboratories, "PKCS #8: Private-Key Information Syntax
         Standard", PKCS Version 1.2, November 1993.

   [16]  RSA Laboratories, "PKCS #12: Personal Information Exchange
         Syntax", PKCS Version 1.1, December 2012.

   [17]  Rivest, R. and B. Lampson, "SDSI - A Simple Distributed
         Security Infrastructure", 1996,
         <http://people.csail.mit.edu/rivest/sdsi10.html>.

   [18]  Turner, S. and L. Chen, "MD2 to Historic Status", RFC 6149,
         March 2011.

   [19]  Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April
         1992.

   [20]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
         Hashing for Message Authentication", RFC 2104, February 1997.

   [21]  Kaliski, B., "PKCS #7: Cryptographic Message Syntax Version
         1.5", RFC 2315, March 1998.

   [22]  Kaliski, B., "PKCS #5: Password-Based Cryptography
         Specification Version 2.0", RFC 2898, September 2000.

   [23]  Nystrom, M. and B. Kaliski, "PKCS #9: Selected Object Classes
         and Attribute Types Version 2.0", RFC 2985, November 2000.

   [24]  Turner, S., "Asymmetric Key Packages", RFC 5958, August 2010.

   [25]  Turner, S. and L. Chen, "Updated Security Considerations for
         the MD5 Message-Digest and the HMAC-MD5 Algorithms", RFC 6151,
         March 2011.
Top   ToC   RFC7292 - Page 19

Appendix A. Message Authentication Codes (MACs)

A MAC is a special type of function of a message (data bits) and an integrity key. It can be computed or checked only by someone possessing both the message and the integrity key. Its security follows from the secrecy of the integrity key. In this standard, MACing is used in password integrity mode. This document uses a particular type of MAC called HMAC [11] [20], which can be constructed from any of a variety of hash functions. Note that the specifications in [20] and [11] differ somewhat from the specification in [9]. The hash function HMAC is based on is identified in the MacData, which holds the MAC; for this version of this standard, the hash function can be one of the following: SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, or SHA-512/256 [10]. As indicated in Appendix B.4, this structure implies that the same hash algorithm must be used to derive the MAC key itself in password integrity mode and that the MAC key has either 160, 224, 256, 384, or 512 bits. When password integrity mode is used to secure a PFX PDU, an HMAC with SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, or SHA-512/256 is computed on the BER-encoding of the contents of the content field of the authSafe field in the PFX PDU (see Section 5.1).

Appendix B. Deriving Keys and IVs from Passwords and Salt

Note that this method for password privacy mode is not recommended and is deprecated for new usage. The procedures and algorithms defined in PKCS #5 v2.1 [13] [22] should be used instead. Specifically, PBES2 should be used as encryption scheme, with PBKDF2 as the key derivation function. The method presented here is still used to generate the key in password integrity mode. We present here a general method for using a hash function to produce various types of pseudorandom bits from a password and a string of salt bits. This method is used for password privacy mode and password integrity mode in the present standard.

B.1. Password Formatting

The underlying password-based encryption methods in PKCS #5 v2.1 view passwords (and salt) as being simple byte strings. The underlying password-based encryption methods and the underlying password-based authentication methods in this version of this document are similar.
Top   ToC   RFC7292 - Page 20
   What's left unspecified in the above paragraph is precisely where the
   byte string representing a password comes from.  (This is not an
   issue with salt strings, since they are supplied as a password-based
   encryption (or authentication) parameter.)  PKCS #5 v2.1 says: "[...]
   a password is considered to be an octet string of arbitrary length
   whose interpretation as a text string is unspecified.  In the
   interest of interoperability, however, it is recommended that
   applications follow some common text encoding rules.  ASCII and UTF-8
   are two possibilities."

   In this specification, however, all passwords are created from
   BMPStrings with a NULL terminator.  This means that each character in
   the original BMPString is encoded in 2 bytes in big-endian format
   (most-significant byte first).  There are no Unicode byte order
   marks.  The 2 bytes produced from the last character in the BMPString
   are followed by 2 additional bytes with the value 0x00.

   To illustrate with a simple example, if a user enters the 6-character
   password "Beavis", the string that PKCS #12 implementations should
   treat as the password is the following string of 14 bytes:

   0x00 0x42 0x00 0x65 0x00 0x61 0x00 0x76 0x00 0x69 0x00 0x73 0x00 0x00

B.2. General Method

Let H be a hash function built around a compression function f: Z_2^u x Z_2^v -> Z_2^u (that is, H has a chaining variable and output of length u bits, and the message input to the compression function of H is v bits). The values for u and v are as follows: HASH FUNCTION VALUE u VALUE v MD2, MD5 128 512 SHA-1 160 512 SHA-224 224 512 SHA-256 256 512 SHA-384 384 1024 SHA-512 512 1024 SHA-512/224 224 1024 SHA-512/256 256 1024
Top   ToC   RFC7292 - Page 21
   Furthermore, let r be the iteration count.

   We assume here that u and v are both multiples of 8, as are the
   lengths of the password and salt strings (which we denote by p and s,
   respectively) and the number n of pseudorandom bits required.  In
   addition, u and v are of course non-zero.

   For information on security considerations for MD5 [19], see [25] and
   [1], and on those for MD2, see [18].

   The following procedure can be used to produce pseudorandom bits for
   a particular "purpose" that is identified by a byte called "ID".  The
   meaning of this ID byte will be discussed later.

   1.  Construct a string, D (the "diversifier"), by concatenating v/8
       copies of ID.

   2.  Concatenate copies of the salt together to create a string S of
       length v(ceiling(s/v)) bits (the final copy of the salt may be
       truncated to create S).  Note that if the salt is the empty
       string, then so is S.

   3.  Concatenate copies of the password together to create a string P
       of length v(ceiling(p/v)) bits (the final copy of the password
       may be truncated to create P).  Note that if the password is the
       empty string, then so is P.

   4.  Set I=S||P to be the concatenation of S and P.

   5.  Set c=ceiling(n/u).

   6.  For i=1, 2, ..., c, do the following:

       A.  Set A2=H^r(D||I). (i.e., the r-th hash of D||1,
           H(H(H(... H(D||I))))

       B.  Concatenate copies of Ai to create a string B of length v
           bits (the final copy of Ai may be truncated to create B).

       C.  Treating I as a concatenation I_0, I_1, ..., I_(k-1) of v-bit
           blocks, where k=ceiling(s/v)+ceiling(p/v), modify I by
           setting I_j=(I_j+B+1) mod 2^v for each j.

   7.  Concatenate A_1, A_2, ..., A_c together to form a pseudorandom
       bit string, A.

   8.  Use the first n bits of A as the output of this entire process.
Top   ToC   RFC7292 - Page 22
   If the above process is being used to generate a DES key, the process
   should be used to create 64 random bits, and the key's parity bits
   should be set after the 64 bits have been produced.  Similar concerns
   hold for 2-key and 3-key triple-DES keys, for CDMF keys, and for any
   similar keys with parity bits "built into them".

B.3. More on the ID Byte

This standard specifies 3 different values for the ID byte mentioned above: 1. If ID=1, then the pseudorandom bits being produced are to be used as key material for performing encryption or decryption. 2. If ID=2, then the pseudorandom bits being produced are to be used as an IV (Initial Value) for encryption or decryption. 3. If ID=3, then the pseudorandom bits being produced are to be used as an integrity key for MACing.

B.4. Keys for Password Integrity Mode

When password integrity mode is used to protect a PFX PDU, a password and salt are used to derive a MAC key. As with password privacy mode, the password is a Unicode string, and the salt is a byte string. No particular lengths are prescribed in this standard for either the password or the salt, but the general advice about passwords and salt that is given in Appendix C applies here, as well. The hash function used to derive MAC keys is whatever hash function is going to be used for MACing. The MAC keys that are derived have the same length as the hash function's output. In this version of this standard, SHA-1, SHA-224, SHA-256, SHA384, SHA-512, SHA-512/224, or SHA/512/256 can be used to perform MACing, and so the MAC keys can be 160, 224, 256, 384, or 512 bits. See Appendix A for more information on MACing.

Appendix C. Keys and IVs for Password Privacy Mode

As stated at the start of Appendix B, use of this method for password privacy mode is not recommended; this specification of keys and IVs for password privacy mode is retained for backwards compatibility with PKCS #12 v1.0 only. When password privacy mode is used to encrypt a PFX PDU, a password (typically entered by the user), a salt and an iteration parameter are used to derive a key (and an IV, if necessary). The password is
Top   ToC   RFC7292 - Page 23
   a Unicode string, and as such, each character in it is represented by
   2 bytes.  The salt is a byte string and so can be represented
   directly as a sequence of bytes.

   This standard does not prescribe a length for the password.  As
   usual, however, too short a password might compromise privacy.  A
   particular application might well require a user-entered privacy
   password for creating a PFX PDU to have a password exceeding some
   specific length.

   This standard does not prescribe a length for the salt either.
   Ideally, the salt is as long as the output of the hash function being
   used and consists of completely random bits.

   The iteration count is recommended to be 1024 or more.  (See [22] and
   [13] for more information.)

   The PBES1 encryption scheme defined in PKCS #5 provides a number of
   algorithm identifiers for deriving keys and IVs; here, we specify a
   few more, all of which use the procedure detailed in Appendices B.2
   and B.3 to construct keys (and IVs, where needed).  As is implied by
   their names, all of the object identifiers below use the hash
   function SHA-1.

pkcs-12PbeIds                    OBJECT IDENTIFIER ::= {pkcs-12 1}
pbeWithSHAAnd128BitRC4           OBJECT IDENTIFIER ::= {pkcs-12PbeIds 1}
pbeWithSHAAnd40BitRC4            OBJECT IDENTIFIER ::= {pkcs-12PbeIds 2}
pbeWithSHAAnd3-KeyTripleDES-CBC  OBJECT IDENTIFIER ::= {pkcs-12PbeIds 3}
pbeWithSHAAnd2-KeyTripleDES-CBC  OBJECT IDENTIFIER ::= {pkcs-12PbeIds 4}
pbeWithSHAAnd128BitRC2-CBC       OBJECT IDENTIFIER ::= {pkcs-12PbeIds 5}
pbewithSHAAnd40BitRC2-CBC        OBJECT IDENTIFIER ::= {pkcs-12PbeIds 6}

   Each of the six PBE object identifiers above has the following ASN.1
   type for parameters:

   pkcs-12PbeParams ::= SEQUENCE {
       salt        OCTET STRING,
       iterations  INTEGER
   }

   The pkcs-12PbeParams holds the salt that is used to generate the key
   (and IV, if necessary) and the number of iterations to carry out.

   Note that the first two algorithm identifiers above (the algorithm
   identifiers for RC4) only derive keys; it is unnecessary to derive an
   IV for RC4.
Top   ToC   RFC7292 - Page 24
   This section is here for two reasons: first, to enable backwards
   compatibility as described in the first paragraph of this section;
   second, because it is still used in password integrity mode.  In
   order to not use it in password integrity mode, the ASN.1 definitions
   require updates.  This document recommends that future definitions of
   the PFX structure replace the existing MacData object, optionally
   present in password integrity mode, with a new object definition that
   holds a MAC based on PKCS#5 [13] [22] PBMAC1 message authentication
   scheme.  This change would simplify the requirements for key
   derivation functions used across all parts of the PFX structure.

Appendix D. ASN.1 Module

This appendix documents all ASN.1 types, values, and object sets defined in this specification. It does so by providing an ASN.1 module called PKCS-12. PKCS-12 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-12(12) modules(0) pkcs-12(1)} -- PKCS #12 v1.1 ASN.1 Module -- Revised October 27, 2012 -- This module has been checked for conformance with the ASN.1 standard -- by the OSS ASN.1 Tools DEFINITIONS IMPLICIT TAGS ::= BEGIN -- EXPORTS ALL -- All types and values defined in this module are exported for use -- in other ASN.1 modules. IMPORTS informationFramework FROM UsefulDefinitions {joint-iso-itu-t(2) ds(5) module(1) usefulDefinitions(0) 3} ATTRIBUTE FROM InformationFramework informationFramework ContentInfo, DigestInfo FROM PKCS-7 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-7(7) modules(0) pkcs-7(1)}
Top   ToC   RFC7292 - Page 25
 PrivateKeyInfo, EncryptedPrivateKeyInfo
     FROM PKCS-8 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
                  pkcs-8(8) modules(1) pkcs-8(1)}

 pkcs-9, friendlyName, localKeyId, certTypes, crlTypes
     FROM PKCS-9 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
                  pkcs-9(9) modules(0) pkcs-9(1)};

 -- ============================
 -- Object identifiers
 -- ============================


 rsadsi  OBJECT IDENTIFIER ::= {iso(1) member-body(2) us(840)
                                rsadsi(113549)}
 pkcs    OBJECT IDENTIFIER ::= {rsadsi pkcs(1)}
 pkcs-12 OBJECT IDENTIFIER ::= {pkcs 12}
 pkcs-12PbeIds OBJECT IDENTIFIER ::= {pkcs-12 1}
 pbeWithSHAAnd128BitRC4          OBJECT IDENTIFIER ::= {pkcs-12PbeIds 1}
 pbeWithSHAAnd40BitRC4           OBJECT IDENTIFIER ::= {pkcs-12PbeIds 2}
 pbeWithSHAAnd3-KeyTripleDES-CBC OBJECT IDENTIFIER ::= {pkcs-12PbeIds 3}
 pbeWithSHAAnd2-KeyTripleDES-CBC OBJECT IDENTIFIER ::= {pkcs-12PbeIds 4}
 pbeWithSHAAnd128BitRC2-CBC      OBJECT IDENTIFIER ::= {pkcs-12PbeIds 5}
 pbewithSHAAnd40BitRC2-CBC       OBJECT IDENTIFIER ::= {pkcs-12PbeIds 6}

 bagtypes OBJECT IDENTIFIER ::= {pkcs-12 10 1}

 -- ============================
 -- The PFX PDU
 -- ============================

 PFX ::= SEQUENCE {
     version    INTEGER {v3(3)}(v3,...),
     authSafe   ContentInfo,
     macData    MacData OPTIONAL
 }

 MacData ::= SEQUENCE {
     mac        DigestInfo,
     macSalt    OCTET STRING,
     iterations INTEGER DEFAULT 1
     -- Note: The default is for historical reasons and its use is
     -- deprecated.
 }
Top   ToC   RFC7292 - Page 26
 AuthenticatedSafe ::= SEQUENCE OF ContentInfo
     -- Data if unencrypted
     -- EncryptedData if password-encrypted
     -- EnvelopedData if public key-encrypted

 SafeContents ::= SEQUENCE OF SafeBag

 SafeBag ::= SEQUENCE {
     bagId         BAG-TYPE.&id ({PKCS12BagSet}),
     bagValue      [0] EXPLICIT BAG-TYPE.&Type({PKCS12BagSet}{@bagId}),
     bagAttributes SET OF PKCS12Attribute OPTIONAL
 }

 -- ============================
 -- Bag types
 -- ============================

 keyBag BAG-TYPE ::=
     {KeyBag              IDENTIFIED BY {bagtypes 1}}
 pkcs8ShroudedKeyBag BAG-TYPE ::=
     {PKCS8ShroudedKeyBag IDENTIFIED BY {bagtypes 2}}
 certBag BAG-TYPE ::=
     {CertBag             IDENTIFIED BY {bagtypes 3}}
 crlBag BAG-TYPE ::=
     {CRLBag              IDENTIFIED BY {bagtypes 4}}
 secretBag BAG-TYPE ::=
     {SecretBag           IDENTIFIED BY {bagtypes 5}}
 safeContentsBag BAG-TYPE ::=
     {SafeContents        IDENTIFIED BY {bagtypes 6}}

 PKCS12BagSet BAG-TYPE ::= {
     keyBag |
     pkcs8ShroudedKeyBag |
     certBag |
     crlBag |
     secretBag |
     safeContentsBag,
     ... -- For future extensions
 }

 BAG-TYPE ::= TYPE-IDENTIFIER

 -- KeyBag
 KeyBag ::= PrivateKeyInfo

 -- Shrouded KeyBag
 PKCS8ShroudedKeyBag ::= EncryptedPrivateKeyInfo
Top   ToC   RFC7292 - Page 27
 -- CertBag
 CertBag ::= SEQUENCE {
     certId    BAG-TYPE.&id   ({CertTypes}),
     certValue [0] EXPLICIT BAG-TYPE.&Type ({CertTypes}{@certId})
 }

 x509Certificate BAG-TYPE ::=
     {OCTET STRING IDENTIFIED BY {certTypes 1}}
     -- DER-encoded X.509 certificate stored in OCTET STRING
 sdsiCertificate BAG-TYPE ::=
     {IA5String IDENTIFIED BY {certTypes 2}}
     -- Base64-encoded SDSI certificate stored in IA5String

 CertTypes BAG-TYPE ::= {
     x509Certificate |
     sdsiCertificate,
     ... -- For future extensions
 }

 -- CRLBag
 CRLBag ::= SEQUENCE {
     crlId     BAG-TYPE.&id ({CRLTypes}),
     crltValue [0] EXPLICIT BAG-TYPE.&Type ({CRLTypes}{@crlId})
 }

 x509CRL BAG-TYPE ::=
     {OCTET STRING IDENTIFIED BY {crlTypes 1}}
     -- DER-encoded X.509 CRL stored in OCTET STRING

 CRLTypes BAG-TYPE ::= {
     x509CRL,
     ... -- For future extensions
 }

 -- Secret Bag
 SecretBag ::= SEQUENCE {
     secretTypeId  BAG-TYPE.&id ({SecretTypes}),
     secretValue   [0] EXPLICIT BAG-TYPE.&Type ({SecretTypes}
                                                {@secretTypeId})
 }

 SecretTypes BAG-TYPE ::= {
     ... -- For future extensions
 }

 -- ============================
 -- Attributes
 -- ============================
Top   ToC   RFC7292 - Page 28
 PKCS12Attribute ::= SEQUENCE {
     attrId      ATTRIBUTE.&id ({PKCS12AttrSet}),
     attrValues  SET OF ATTRIBUTE.&Type ({PKCS12AttrSet}{@attrId})
 } -- This type is compatible with the X.500 type 'Attribute'

 PKCS12AttrSet ATTRIBUTE ::= {
     friendlyName |
     localKeyId,
     ... -- Other attributes are allowed
 }

 END

Appendix E. Intellectual Property Considerations

EMC Corporation makes no patent claims on the general constructions described in this document, although specific underlying techniques may be covered. RC2 and RC4 are trademarks of EMC Corporation. EMC Corporation makes no representations regarding intellectual property claims by other parties. Such determination is the responsibility of the user.

Appendix F. Acknowledgments

Many thanks to Dan Simon of Microsoft Corporation and Jim Spring of Netscape Communications Corporation for their assistance in preparing early drafts of this document. Especial thanks to Brian Beckman of Microsoft Corporation for writing the specification that this document is based on.

Appendix G. About PKCS

The Public-Key Cryptography Standards are specifications produced by RSA Laboratories in cooperation with secure systems developers worldwide for the purpose of accelerating the deployment of public- key cryptography. First published in 1991 as a result of meetings with a small group of early adopters of public-key technology, the PKCS documents have become widely referenced and implemented. Contributions from the PKCS series have become part of many formal and de facto standards, including ANSI X9 documents, PKIX, SET, S/ MIME, and SSL. Further development of PKCS occurs through the IETF. Suggestions for improvement are welcome.
Top   ToC   RFC7292 - Page 29

Authors' Addresses

Kathleen M. Moriarty (editor) EMC Corporation 176 South Street Hopkinton, MA United States EMail: Kathleen.Moriarty@emc.com Magnus Nystrom Microsoft Corporation 1 Microsoft Way Redmond, WA 98052 United States EMail: mnystrom@microsoft.com Sean Parkinson RSA Security Inc. 345 Queen Street Brisbane, QLD, 4000 Australia EMail: Sean.Parkinson@rsa.com Andreas Rusch RSA Security Inc. 345 Queen Street Brisbane, QLD, 4000 Australia EMail: Andreas.Rusch@rsa.com Michael Scott RSA Security Inc. 345 Queen Street Brisbane, QLD, 4000 Australia EMail: Michael2.Scott@rsa.com