tech-invite   World Map     

IETF     RFCs     Groups     SIP     ABNFs    |    3GPP     Specs     Gloss.     Arch.     IMS     UICC    |    Misc.    |    search     info

RFC 5601

 Errata 
Proposed STD
Pages: 67
Top     in Index     Prev     Next
in Group Index     Prev in Group     Next in Group     Group: PWE3

Pseudowire (PW) Management Information Base (MIB)

Part 1 of 3, p. 1 to 11
None       Next RFC Part

 


Top       ToC       Page 1 
Network Working Group                                     T. Nadeau, Ed.
Request for Comments: 5601                                            BT
Category: Standards Track                                  D. Zelig, Ed.
                                                                  Oversi
                                                               July 2009


           Pseudowire (PW) Management Information Base (MIB)

Abstract

   This memo defines a Standards Track portion of the Management
   Information Base for use with network management protocols in the
   Internet community.  In particular, it describes managed objects for
   modeling of Pseudowire Edge-to-Edge services carried over a general
   Packet Switched Network.

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (c) 2009 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents in effect on the date of
   publication of this document (http://trustee.ietf.org/license-info).
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.

Top       Page 2 
Table of Contents

   1. Introduction ....................................................2
   2. The Internet-Standard Management Framework ......................2
   3. Conventions .....................................................3
   4. Overview ........................................................3
   5. Structure of the MIB Module .....................................3
   6. PW-STD-MIB Module Usage .........................................4
   7. Relations to Other PWE3 MIB Modules .............................5
   8. Relations to the IF-MIB .........................................5
   9. PW Notifications ................................................6
   10. Example of the PW MIB Modules Usage ............................6
   11. IANA PWE3 MIB Module ...........................................8
   12. Object Definitions ............................................11
   13. Security Considerations .......................................62
   14. IANA Considerations ...........................................63
      14.1. ifType for PW ............................................63
      14.2. PW MIB Modules OBJECT IDENTIFIER Values ..................63
      14.3. IANA Considerations for PW-STD-MIB .......................64
      14.4. IANA Considerations for IANA-PWE3-MIB ....................64
   15. Acknowledgments ...............................................64
   16. References ....................................................64
      16.1. Normative References .....................................64
      16.2. Informative References ...................................66

1.  Introduction

   This memo defines a portion of the Management Information Base (MIB)
   for use with network management protocols in the Internet community.
   In particular, it defines a MIB module that can be used to manage
   pseudowire (PW) services for transmission over a Packet Switched
   Network (PSN) [RFC3931] [RFC4447].  This MIB module provides generic
   management of PWs that is common to all types of PSN and PW services
   defined by the IETF PWE3 Working Group.

2.  The Internet-Standard Management Framework

   For a detailed overview of the documents that describe the current
   Internet-Standard Management Framework, please refer to section 7 of
   RFC 3410 [RFC3410].

   Managed objects are accessed via a virtual information store, termed
   the Management Information Base or MIB.  MIB objects are generally
   accessed through the Simple Network Management Protocol (SNMP).
   Objects in the MIB are defined using the mechanisms defined in the
   Structure of Management Information (SMI).  This memo specifies a MIB

Top      ToC       Page 3 
   module that is compliant to the SMIv2, which is described in STD 58,
   RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
   [RFC2580].

3.  Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [BCP14].

   This document adopts the definitions, acronyms, and mechanisms
   described in [RFC3985] and [RFC3916].  Unless otherwise stated, the
   mechanisms of [RFC3985] apply and will not be re-described here.

4.  Overview

   The PWE3 MIB modules architecture provides a layered modular model
   into which any supported emulated service can be connected to any
   supported PSN type.  This specific MIB module provides the glue for
   mapping between the emulated service onto the native PSN service.  As
   such, the defining of a PW emulated service requires the use of at
   least three types of MIB modules.

   Starting from the emulated service, the first type is a service-
   specific module, which is dependent on the emulated signal type.
   These modules are defined in other documents.

   The second type is this module, the PW-STD-MIB module, which
   configures general parameters of the PW that are common to all types
   of emulated services and PSN types.

   The third type of module is a PSN-specific module.  There is a
   different module for each type of PSN.  These modules associate the
   PW with one or more "tunnels" that carry the service over the PSN.
   These modules are defined in other documents.

5.  Structure of the MIB Module

   The MIB module consists of six tables:

   - The generic configuration and status monitoring objects that are
     common to all service types and PSN types (pwTable).

   - The PW Performance Current Table (pwPerfCurrentTable) contains PW
     statistics for the current 15-minute period.

Top      ToC       Page 4 
   - The PW Performance Interval Table (pwPerfIntervalTable) contains PW
     statistics for historical intervals (usually 96 15-minute entries
     to cover a 24-hour period).

   - The PW Performance 1-day Interval Table (pwPerf1DayIntervalTable)
     contains PW statistics for historical intervals accumulated per
     day.  Usually 30 1-day entries to cover a monthly period.

   - The mapping table (pwIndexMappingTable) enables the reverse mapping
     of the unique PWid parameters [peer IP, PW type, and PW ID] and the
     pwIndex.

   - The mapping table (pwGenFecIndexMappingTable) enables the reverse
     mapping of unique PWid parameters used in genFecSignaling
     [pwGroupAttachmentID, pwLocalAttachmentID, and pwPeerAttachmentID]
     and the pwIndex.

   This MIB module uses Textual Conventions from [RFC2578], [RFC2579],
   [RFC2580], [RFC2863], [RFC3411], [RFC3593], [RFC3705], [RFC4001], and
   [RFC5542], and references [RFC3413], [RFC4623], and [RFC4720].

6.  PW-STD-MIB Module Usage

   An entry in the PW table (pwTable) MUST exist for all PW types (ATM,
   FR, Ethernet, SONET, etc.).  This table holds generic parameters
   related to the PW creation and monitoring.

   A conceptual row can be created in the pwTable in one of the
   following ways:

   1) The operator creates a row in the pwTable when configuring the
      node for a new service.  This mode MUST be supported by the agent,
      and MUST be used when creating a non-signaled (manually assigned)
      PW.

   2) The agent MAY create a row in the pwTable if a signaling message
      has been received from a peer node with signaling identification
      parameters that are not already known to the local node (i.e.,
      there is no related entry created by the operator with matching
      parameters).  This mode is OPTIONAL.

   3) The agent MAY create a row in the pwTable automatically due to
      some auto-discovery application, or based on configuration that is
      done through non-SNMP applications.  This mode is OPTIONAL.

      - The agent then creates the rows in the (locally supported)
        performance tables and reverse-mapping tables in PW-STD-MIB
        module.

Top      ToC       Page 5 
7.  Relations to Other PWE3 MIB Modules

   - Based on the PSN type defined for the PW, a row is created in the
     PSN-specific module (for example, [RFC5602]) and associated to the
     PW table by the common pwIndex.

   - Based on the PW type defined for the PW, a row is created in the
     service-specific module (for example, [CEPMIB]) and associated to
     the PW table by the common pwIndex.

   - Unless all the necessary entries in the applicable tables have been
     created and all the parameters have been consistently configured in
     those tables, signaling cannot be performed from the local node,
     and the pwVcOperStatus should report 'notPresent'.

8.  Relations to the IF-MIB

   The PW in general is not an ifIndex [RFC2863] on its own, for agent
   scalability reasons.  The PW is typically associated via the PWE3 MIB
   modules to an ifIndex the PW is emulating.  This ifIndex may
   represent a physical entity -- for example, a PW emulating a SONET
   path as in Circuit Emulation Service over Packet (CEP).  In that
   case, the PW itself is not an ifIndex; however, the PW-STD-CEP-MIB
   module associates the PW to the ifIndex of the path to be emulated.
   In some cases, the PW will be associated to an ifIndex representing a
   virtual interface.  An example is Virtual Private LAN Service (VPLS)
   where the PW emulates a logical interface of a (logical) bridge.  The
   physical ports' association to the VPLS instance is defined in the
   non-PW MIB modules in this case.

   Exception to the above MAY exist in some implementations where it is
   convenient to manage the PW as an ifIndex in the ifTable.  A special
   ifType to represent a PW virtual interface (246) will be used in the
   ifTable in this case.

   When the PW is managed as an ifIndex, by default it SHOULD NOT be
   stacked, i.e., this ifIndex SHOULD NOT be layered above the
   respective PSN tunnel ifIndex or the attachment circuit ifIndex or
   the interface carrying the attachment circuit.

   Note that the ifIndex that carries the PW toward/from the PSN is not
   explicitly configured via PWE3 MIB modules except in rare cases.  In
   most cases, the PW is carried inside a PSN tunnel, and the interfaces
   carrying the tunnel are specified in the related MIB modules that
   control the PSN tunnels.

Top      ToC       Page 6 
9.  PW Notifications

   This MIB module includes notifications for PW entering the up or down
   state, in accordance with the guidelines for interface notifications
   as described in [RFC2863].  Implementers should be aware that in many
   systems, it is desired to correlate notifications, such that
   notifications will not be emitted if notifications from a higher
   level (such as ports or tunnels) are already in effect.  Specifically
   for PWs, it is anticipated that most network's equipment failures
   turn into lowerLayerDown state at the PW level, where a notification
   has already been emitted from a higher level.

   When a PW is represented as an ifIndex, it is RECOMMENDED that PW
   notifications be turned off, to avoid duplication with the ifIndex
   status change notifications.

10.  Example of the PW MIB Modules Usage

   In this section, we provide an example of using the MIB objects
   described in section 7 to set up a CEP PW over Multiprotocol Label
   Switching (MPLS) PSN.  While this example is not meant to illustrate
   every permutation of the MIB, it is intended as an aid to
   understanding some of the key concepts.  It is meant to be read after
   going through the MIB itself.

   In this example, a PW service for CEP is configured over an MPLS PSN
   (MPLS-TE tunnel).  It uses LDP as in [RFC4447] for service setup.

   For the operation in the service-specific MIB modules and the PSN-
   specific MIB modules, see the specific MIB module memo.  This example
   is continued in the memo describing the PW-CEP-STD-MIB module (for
   example, [CEPMIB]) and the PW-MPLS-STD-MIB module [RFC5602].

Top      ToC       Page 7 
   In the PW-STD-MIB module:

   In pwTable:
   {
      pwIndex               5,

      pwType                cep,
      pwOwner               pwIdFecSignaling,
      pwPsnType             mpls,
      pwSetUpPriority       0, -- Highest
      pwHoldingPriority     0, -- Highest
      pwInboundMode         loose,

      pwPeerAddrType        ipv4,
      pwPeerAddr            192.0.2.5, -- In this case, equal to the
                                       -- peer LDP entity IP addr
      pwID                  10,
      pwLocalGroupID        12,
      ..

      pwCwPreference        true,   -- Actually ignored for CEP
      pwLocalIfMtu          0,      -- Do not send ifMtu parameter
      pwLocalIfString       false,  -- Do not send interface string
      pwCapabAdvert         0,      -- Does not support status
                                    -- report to the peer.
      pwRemoteGroupID       0xFFFF, -- Will be received by
                                    -- signaling protocol
      pwRemoteCwStatus      notKnownYet,
      pwRemoteIfMtu         0,
      pwRemoteIfString      "",
      pwRemoteCapabilities  notYetKnown,
      ..
      pwOutboundVcLabel     0xFFFF, -- Will be received by
                                    -- signaling protocol
      pwInboundVcLabel      0xFFFF, -- Will be set by signaling
                                    -- protocol
      pwName                "Example of CEP PW",
      pwDescr               "",
      ..

      pwAdminStatus         up,
      ..
       }

Top      ToC       Page 8 
11.  IANA PWE3 MIB Module

   This section contains the initial version of the IANA-PWE3-MIB.  IANA
   has updated this MIB module based on expert review as defined in
   [RFC5226].  Each new assignment of PW type or PW PSN type made by
   IANA based on the procedures described in [RFC4446] should be
   documented in the online version of IANA-PWE3-MIB.  The current
   IANA-PWE3-MIB contains PW types as requested in [RFC4446] and
   [RFC4863].

   IANA-PWE3-MIB DEFINITIONS ::= BEGIN

   IMPORTS
       MODULE-IDENTITY, mib-2
          FROM SNMPv2-SMI -- [RFC2578]

       TEXTUAL-CONVENTION
          FROM SNMPv2-TC; -- [RFC2579]

   ianaPwe3MIB  MODULE-IDENTITY
       LAST-UPDATED "200906110000Z"  -- 11 June 2009 00:00:00 GMT
       ORGANIZATION "IANA"
       CONTACT-INFO
            "Internet Assigned Numbers Authority
            Internet Corporation for Assigned Names and Numbers
            4676 Admiralty Way, Suite 330
            Marina del Rey, CA 90292-6601

            Phone: +1 310 823 9358
            EMail: iana@iana.org"
       DESCRIPTION
           "This MIB module defines the IANAPwTypeTC and
           IANAPwPsnTypeTC textual conventions for use in PWE3
           MIB modules.

           Any additions or changes to the contents of this MIB
           module require either publication of an RFC, Designated
           Expert Review as defined in RFC 5226, Guidelines for
           Writing an IANA Considerations Section in RFCs, and should
           be based on the procedures defined in [RFC4446].  The
           Designated Expert will be selected by the IESG Area
           Director(s) of the internet Area.

           Copyright (c) 2009 IETF Trust and the persons identified as
           authors of the code.  All rights reserved.

           Redistribution and use in source and binary forms, with or
           without modification, are permitted provided that the

Top      ToC       Page 9 
           following conditions are met:

           - Redistributions of source code must retain the above
             copyright notice, this list of conditions and the
             following disclaimer.

           - Redistributions in binary form must reproduce the above
             copyright notice, this list of conditions and the
             following disclaimer in the documentation and/or other
             materials provided with the distribution.

           - Neither the name of Internet Society, IETF or IETF Trust,
             nor the names of specific contributors, may be used to
             endorse or promote products derived from this software
             without specific prior written permission.

           THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
           CONTRIBUTORS 'AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
           INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
           MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
           DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
           CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
           INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
           (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
           GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
           BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
           LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
           (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
           OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
           POSSIBILITY OF SUCH DAMAGE. "

       REVISION     "200906110000Z"  -- 11 June 2009 00:00:00 GMT
       DESCRIPTION  "Original version, published as part of RFC 5601."
       ::= { mib-2 174 }

   IANAPwTypeTC ::= TEXTUAL-CONVENTION
      STATUS     current
      DESCRIPTION
         "Indicates the PW type (i.e., the carried service). "
    SYNTAX   INTEGER {
       other(0),
       frameRelayDlciMartiniMode(1),
       atmAal5SduVcc(2),
       atmTransparent(3),
       ethernetTagged(4),
       ethernet(5),
       hdlc(6),
       ppp(7),

Top      ToC       Page 10 
       cem(8),  -- Historic type
       atmCellNto1Vcc(9),
       atmCellNto1Vpc(10),
       ipLayer2Transport(11),
       atmCell1to1Vcc(12),
       atmCell1to1Vpc(13),
       atmAal5PduVcc(14),
       frameRelayPortMode(15),
       cep(16),
       e1Satop(17),
       t1Satop(18),
       e3Satop(19),
       t3Satop(20),
       basicCesPsn(21),
       basicTdmIp(22),
       tdmCasCesPsn(23),
       tdmCasTdmIp(24),
       frDlci(25),
       wildcard (32767)
        }

   IANAPwPsnTypeTC ::= TEXTUAL-CONVENTION
      STATUS      current
      DESCRIPTION
         "Identifies the PSN type that the PW will use over the
          network."
      SYNTAX   INTEGER {
         mpls        (1),
         l2tp        (2),
         udpOverIp   (3),
         mplsOverIp  (4),
         mplsOverGre (5),
         other       (6)
         }

   IANAPwCapabilities ::= TEXTUAL-CONVENTION
      STATUS      current
      DESCRIPTION
         "This TC describes a collection of capabilities related to
          a specific PW.
          Values may be added in the future based on new capabilities
          introduced in IETF documents.
         "
     SYNTAX   BITS {
       pwStatusIndication (0), -- Applicable only if maintenance
                               -- protocol is in use.
       pwVCCV             (1)
     }

Top      ToC       Page 11 
   END



(page 11 continued on part 2)

Next RFC Part