Tech-invite3GPPspaceIETFspace
959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 4682

Multimedia Terminal Adapter (MTA) Management Information Base for PacketCable- and IPCablecom-Compliant Devices

Pages: 60
Proposed Standard
Updated by:  9141
Part 3 of 3 – Pages 36 to 60
First   Prev   None

Top   ToC   RFC4682 - Page 36   prevText
   pktcMtaDevRealmUnsolicitedKeyMaxTimeout  OBJECT-TYPE
       SYNTAX      Unsigned32 (1..600)
       UNITS       "seconds"
       MAX-ACCESS  read-create
       STATUS      current
       DESCRIPTION
           " This object specifies the maximum time the MTA will
             attempt to perform the exponential back-off algorithm.
             This timer only applies when the MTA initiated key
             management.  If the DHCP option code 122, sub-option 4, is
             provided to the MTA, it overwrites this value.

             Unsolicited key updates are retransmitted according to an
             exponential back-off mechanism using two timers and a
             maximum retry counter for AS replies.
             The initial retransmission timer value is the nominal
             timer value (pktcMtaDevRealmUnsolicitedKeyNomTimeout).  The
             retransmissions occur with an exponentially increasing
             interval that caps at the maximum timeout value
             (pktcMtaDevRealmUnsolicitedKeyMaxTimeout).
             Retransmissions stop when the maximum retry counter is
             reached (pktcMatDevRealmUnsolicitedMaxRetries).

             For example, with values of 3 seconds for the nominal
             timer, 20 seconds for the maximum timeout, and 5 retries
             max, retransmission intervals will be 3 s, 6 s,
             12 s, 20 s, and 20 s, and retransmissions then stop because
             the maximum number of retries has been reached."
       REFERENCE
           " PacketCable Security Specification."
       DEFVAL { 100 }
       ::= { pktcMtaDevRealmEntry 6 }

   pktcMtaDevRealmUnsolicitedKeyNomTimeout  OBJECT-TYPE
       SYNTAX      Unsigned32 (100..600000)
       UNITS       "milliseconds"
       MAX-ACCESS  read-create
       STATUS      current
       DESCRIPTION
           " This object specifies the initial timeout value
             for the AS-REQ/AS-REP exponential back-off and retry
             mechanism.  If the DHCP option code 122, sub-option 4, is
             provided to the MTA, it overwrites this value.
             This value should account for the average roundtrip
             time between the MTA and the KDC, as well as the
             processing delay on the KDC.
Top   ToC   RFC4682 - Page 37
             Unsolicited key updates are retransmitted according to an
             exponential back-off mechanism using two timers and a
             maximum retry counter for AS replies.
             The initial retransmission timer value is the nominal
             timer value (pktcMtaDevRealmUnsolicitedKeyNomTimeout).  The
             retransmissions occur with an exponentially increasing
             interval that caps at the maximum timeout value
             (pktcMtaDevRealmUnsolicitedKeyMaxTimeout).
             Retransmissions stop when the maximum retry counter is
             reached (pktcMatDevRealmUnsolicitedMaxRetries).

             For example, with values of 3 seconds for the nominal
             timer, 20 seconds for the maximum timeout, and 5 retries
             max, in retransmission intervals will be 3 s, 6 s,
             12 s, 20 s, and 20 s; retransmissions then stop because
             the maximum number of retries has been reached."
       REFERENCE
           " PacketCable Security Specification."
       DEFVAL { 3000 }
       ::= { pktcMtaDevRealmEntry 7 }

   pktcMtaDevRealmUnsolicitedKeyMaxRetries  OBJECT-TYPE
       SYNTAX      Unsigned32 (0..1024)
       MAX-ACCESS  read-create
       STATUS      current
       DESCRIPTION
           " This object specifies the maximum number of retries the
             MTA attempts to obtain a ticket from the KDC.

             Unsolicited key updates are retransmitted according to an
             exponential back-off mechanism using two timers and a
             maximum retry counter for AS replies.
             The initial retransmission timer value is the nominal
             timer value (pktcMtaDevRealmUnsolicitedKeyNomTimeout).  The
             retransmissions occur with an exponentially increasing
             interval that caps at the maximum timeout value
             (pktcMtaDevRealmUnsolicitedKeyMaxTimeout).
             Retransmissions stop when the maximum retry counter is
             reached (pktcMatDevRealmUnsolicitedMaxRetries).

             For example, with values of 3 seconds for the nominal
             timer, 20 seconds for the maximum timeout, and 5 retries
             max, retransmission intervals will be 3 s, 6 s,
             12 s, 20 s, and 20 s; retransmissions then stop because
             the maximum number of retries has been reached."
       REFERENCE
           " PacketCable Security Specification."
       DEFVAL { 5 }
Top   ToC   RFC4682 - Page 38
       ::= { pktcMtaDevRealmEntry 8 }

   pktcMtaDevRealmStatus     OBJECT-TYPE
       SYNTAX      RowStatus
       MAX-ACCESS  read-create
       STATUS      current
       DESCRIPTION
           " This object defines the row status of this realm in the
             realm table (pktcMtaDevRealmTable).

             An entry in this table is not qualified for activation
             until the object instances of all corresponding columns
             have been initialized, either by default values, or via
             explicit SET operations.  Until all object instances in
             this row are initialized, the status value for this realm
             must be 'notReady(3)'.
             In particular, two columnar objects must be explicitly
             SET: the realm name (pktcMtaDevRealmName) and the
             organization name (pktcMtaDevRealmOrgName).  Once these 2
             objects have been set and the row status is SET to
             'active(1)', the MTA MUST NOT allow any modification of
             these 2 object values.
             The value of this object has no effect on whether other
             columnar objects in this row can be modified."
       ::= { pktcMtaDevRealmEntry 9 }

   --=================================================================
   --
   --  The CMS table, pktcMtaDevCmsTable
   --
   -- The CMS table and the realm table (pktcMtaDevRealmTable) are used
   -- for managing the MTA signaling security.  The CMS table defines
   -- the CMSes the MTA is allowed to communicate with and contains
   -- the parameters describing the SA establishment between the MTA
   -- and a CMS.
   -- The CMS table is indexed by pktcMtaDevCmsIndex.  The table
   -- contains the CMS FQDN (pktcMtaDevCmsFQDN) and the associated
   -- Kerberos realm name (pktcMtaDevCmsKerbRealmName) so that the MTA
   -- can find the corresponding Kerberos realm name in the
   -- pktcMtaDevRealmTable.
   --
   --=================================================================

   pktcMtaDevCmsAvailSlot   OBJECT-TYPE
       SYNTAX      Unsigned32 (0..128)
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
Top   ToC   RFC4682 - Page 39
           " This object contains the index number of the first
             available entry in the CMS table (pktcMtaDevCmsTable).
             If all the entries in the CMS table have been assigned,
             this object contains the value of zero.
             A management station should create new entries in the
             CMS table, using the following procedure:

             First, issue a management protocol retrieval operation
             to determine the value of the first available index in the
             CMS table (pktcMtaDevCmsAvailSlot).

             Second, issue a management protocol SET operation
             to create an instance of the pktcMtaDevCmsStatus
             object by setting its value to 'createAndWait(5)'.

             Third, if the SET operation succeeded, continue
             modifying the object instances corresponding to the newly
             created conceptual row, without fear of collision with
             other management stations.  When all necessary conceptual
             columns of the row are properly populated (via SET
             operations or default values), the management station may
             SET the pktcMtaDevCmsStatus object to 'active(1)'."
       ::= {  pktcMtaDevSecurity 7 }

   pktcMtaDevCmsTable  OBJECT-TYPE
       SYNTAX      SEQUENCE OF PktcMtaDevCmsEntry
       MAX-ACCESS  not-accessible
       STATUS      current
       DESCRIPTION
           " This object defines the CMS table.
             The CMS table (pktcMtaDevCmsTable) and the realm table
             (pktcMtaDevRealmTable) are used for managing security
             between the MTA and CMSes.  Each CMS table entry defines
             a CMS the managed MTA is allowed to communicate with
             and contains security parameters for key management with
             that CMS."
       ::= {  pktcMtaDevSecurity 8 }

   pktcMtaDevCmsEntry  OBJECT-TYPE
       SYNTAX      PktcMtaDevCmsEntry
       MAX-ACCESS  not-accessible
       STATUS      current
       DESCRIPTION
           " This table entry object lists the MTA key management
             parameters used when establishing Security Associations
             with a CMS.  The conceptual rows MUST NOT persist across
             MTA reboots."
       INDEX { pktcMtaDevCmsIndex }
Top   ToC   RFC4682 - Page 40
       ::= { pktcMtaDevCmsTable 1 }

   PktcMtaDevCmsEntry ::= SEQUENCE {
       pktcMtaDevCmsIndex                        Unsigned32,
       pktcMtaDevCmsFqdn                         SnmpAdminString,
       pktcMtaDevCmsKerbRealmName                SnmpAdminString,
       pktcMtaDevCmsMaxClockSkew                 Unsigned32,
       pktcMtaDevCmsSolicitedKeyTimeout          Unsigned32,
       pktcMtaDevCmsUnsolicitedKeyMaxTimeout     Unsigned32,
       pktcMtaDevCmsUnsolicitedKeyNomTimeout     Unsigned32,
       pktcMtaDevCmsUnsolicitedKeyMaxRetries     Unsigned32,
       pktcMtaDevCmsIpsecCtrl                    TruthValue,
       pktcMtaDevCmsStatus                       RowStatus
       }

   pktcMtaDevCmsIndex  OBJECT-TYPE
       SYNTAX      Unsigned32 (1..128)
       MAX-ACCESS  not-accessible
       STATUS      current
       DESCRIPTION
           " This object defines the CMS table index."
       ::= { pktcMtaDevCmsEntry 1 }

   pktcMtaDevCmsFqdn  OBJECT-TYPE
       SYNTAX      SnmpAdminString (SIZE(1..255))
       MAX-ACCESS  read-create
       STATUS      current
       DESCRIPTION
           " This object specifies the CMS FQDN.  The MTA must
             prohibit the instantiation of any two rows with identical
             FQDNs.  The MTA must also verify that any search and/or
             comparison operation involving a CMS FQDN is case
             insensitive.  The MTA must resolve the CMS FQDN as required
              by the corresponding PacketCable Specifications."
       REFERENCE
           " PacketCable MTA Device Provisioning Specification;
             PacketCable Security Specification;
             PacketCable Network-Based Call Signaling Protocol
             Specification."
       ::= { pktcMtaDevCmsEntry 2 }

   pktcMtaDevCmsKerbRealmName  OBJECT-TYPE
       SYNTAX      SnmpAdminString (SIZE(1..255))
       MAX-ACCESS  read-create
       STATUS      current
       DESCRIPTION
           " This object identifies the Kerberos realm name in uppercase
             characters associated with the CMS defined in this
Top   ToC   RFC4682 - Page 41
             conceptual row.  The object value is a reference
             point to the corresponding Kerberos realm name in the
             realm table (pktcMtaDevRealmTable)."
       ::= { pktcMtaDevCmsEntry 3 }

   pktcMtaDevCmsMaxClockSkew    OBJECT-TYPE
       SYNTAX      Unsigned32 (1..1800)
       UNITS       "seconds"
       MAX-ACCESS  read-create
       STATUS      current
       DESCRIPTION
           " This object specifies the maximum allowable clock skew
             between the MTA and the CMS defined in this row."
       DEFVAL { 300 }
       ::= { pktcMtaDevCmsEntry 4 }

   pktcMtaDevCmsSolicitedKeyTimeout  OBJECT-TYPE
       SYNTAX      Unsigned32 (100..30000)
       UNITS       "milliseconds"
       MAX-ACCESS  read-create
       STATUS      current
       DESCRIPTION
           " This object defines a Kerberos Key Management timer on the
             MTA.  It is the time period during which the MTA saves the
             nonce and Server Kerberos Principal Identifier to match an
             AP Request and its associated AP Reply response from the
             CMS.  This timer only applies when the CMS initiated key
             management (with a Wake Up message or a Rekey message)."
       REFERENCE
           " PacketCable Security Specification."
       DEFVAL { 1000 }
       ::= { pktcMtaDevCmsEntry 5 }

   --=================================================================
   --
   --  Unsolicited key updates are retransmitted according to an
   --  exponential back-off mechanism using two timers and a maximum
   --  retry counter for AS replies.
   --  The initial retransmission timer value is the nominal timer
   --  value (pktcMtaDevCmsUnsolicitedKeyNomTimeout).  The
   --  retransmissions occur with an exponentially increasing interval
   --  that caps at the maximum timeout value
   --  (pktcMtaDevCmsUnsolicitedKeyMaxTimeout).
   --  Retransmissions stop when the maximum retry counter is reached
   --  (pktcMatDevCmsUnsolicitedMaxRetries).
   --  For example, with values of 3 seconds for the nominal
   --  timer, 20 seconds for the maximum timeout, and 5 retries max,
   --  retransmission intervals will be 3 s, 6 s, 12 s,
Top   ToC   RFC4682 - Page 42
   --  20 s, and 20 s; retransmissions then stop due to the
   --  maximum number of retries reached.
   --
   --=================================================================

   pktcMtaDevCmsUnsolicitedKeyMaxTimeout  OBJECT-TYPE
       SYNTAX      Unsigned32 (1..600)
       UNITS       "seconds"
       MAX-ACCESS  read-create
       STATUS      current
       DESCRIPTION
           " This object defines the timeout value that only applies
             to an MTA-initiated key management exchange.  It is the
             maximum timeout, and it may not be exceeded in the
             exponential back-off algorithm."
       REFERENCE
           " PacketCable Security Specification."
       DEFVAL { 600 }
       ::= { pktcMtaDevCmsEntry 6 }

   pktcMtaDevCmsUnsolicitedKeyNomTimeout  OBJECT-TYPE
       SYNTAX      Unsigned32 (100..30000)
       UNITS       "milliseconds"
       MAX-ACCESS  read-create
       STATUS      current
       DESCRIPTION
           " This object defines the starting value of the timeout
             for an MTA-initiated key management.  It should account for
             the average roundtrip time between the MTA and the CMS and
             the processing time on the CMS."
       REFERENCE
           " PacketCable Security Specification."
       DEFVAL { 500 }
       ::= { pktcMtaDevCmsEntry 7 }

   pktcMtaDevCmsUnsolicitedKeyMaxRetries  OBJECT-TYPE
       SYNTAX      Unsigned32 (0..1024)
       MAX-ACCESS  read-create
       STATUS      current
       DESCRIPTION
           " This object contains the maximum number of retries before
             the MTA stops attempting to establish a Security
             Association with the CMS."
       REFERENCE
           " PacketCable Security Specification."
       DEFVAL { 5 }
       ::= { pktcMtaDevCmsEntry 8 }
Top   ToC   RFC4682 - Page 43
   pktcMtaDevCmsIpsecCtrl     OBJECT-TYPE
       SYNTAX        TruthValue
       MAX-ACCESS    read-only
       STATUS        current
       DESCRIPTION
           " This object specifies the MTA IPSec control flag.
             If the object value is 'true', the MTA must use Kerberos
             Key Management and IPsec to communicate with this CMS.  If
             it is 'false', IPSec Signaling Security and Kerberos key
             management are disabled for this specific CMS."
       DEFVAL { true }
       ::= { pktcMtaDevCmsEntry 9 }

   pktcMtaDevCmsStatus     OBJECT-TYPE
       SYNTAX      RowStatus
       MAX-ACCESS  read-create
       STATUS      current
       DESCRIPTION
           " This object defines the row status associated with this
             particular CMS in the CMS table (pktcMtaDevCmsTable).

             An entry in this table is not qualified for activation
             until the object instances of all corresponding columns
             have been initialized, either by default values or via
             explicit SET operations.  Until all object instances in
             this row are initialized, the status value for this realm
             must be 'notReady(3)'.
             In particular, two columnar objects must be SET: the
             CMS FQDN (pktcMtaDevCmsFqdn) and the Kerberos realm name
             (pktcMtaDevCmsKerbRealmName).  Once these 2 objects have
             been set and the row status is SET to 'active(1)', the MTA
             MUST NOT allow any modification of these 2 object values.

             The value of this object has no effect on
             whether other columnar objects in this row can be
             modified."
       ::= { pktcMtaDevCmsEntry 10 }

   pktcMtaDevResetKrbTickets   OBJECT-TYPE
       SYNTAX      BITS {
                            invalidateProvOnReboot   (0),
                            invalidateAllCmsOnReboot (1)
                   }
       MAX-ACCESS   read-write
       STATUS    current
       DESCRIPTION
           " This object defines a Kerberos Ticket Control Mask that
             instructs the MTA to invalidate the specific Application
Top   ToC   RFC4682 - Page 44
             Server Kerberos ticket(s) that are stored locally in the
             MTA NVRAM (non-volatile or persistent memory).
             If the MTA does not store Kerberos tickets in NVRAM, it
             MUST ignore setting of this object and MUST report a BITS
             value of zero when the object is read.
             If the MTA supports Kerberos tickets storage in NVRAM, the
             object value is encoded as follows:
             - Setting the invalidateProvOnReboot bit (bit 0) to 1
               means that the MTA MUST invalidate the Kerberos
               Application Ticket(s) for the Provisioning Application
               at the next MTA reboot if secure SNMP provisioning mode
               is used.  In non-secure provisioning modes, the MTA MUST
               return an 'inconsistentValue' in response to SNMP SET
               operations with a bit 0 set to 1.
             - Setting the invalidateAllCmsOnReboot bit (bit 1) to 1
               means that the MTA MUST invalidate the Kerberos
               Application Ticket(s) for all CMSes currently assigned
               to the MTA endpoints.
             If a value is written into an instance of
             pktcMtaDevResetKrbTickets, the agent MUST retain the
             supplied value across an MTA re-initialization or
             reboot."
       REFERENCE
           "PacketCable Security Specification."
       DEFVAL { {   } }
       ::= {  pktcMtaDevSecurity 9 }

   --
   -- The following group, pktcMtaDevErrors, defines an OID
   -- corresponding to error conditions encountered during the MTA
   -- provisioning.
   --

   pktcMtaDevErrorsTooManyErrors OBJECT-IDENTITY
       STATUS     current
       DESCRIPTION
           "This object defines the OID corresponding to the error
            condition when too many errors are encountered in the
            MTA configuration file during provisioning."
          ::= { pktcMtaDevErrors  1 }

   pktcMtaDevProvisioningEnrollment  NOTIFICATION-TYPE
       OBJECTS {
               sysDescr,
               pktcMtaDevSwCurrentVers,
               pktcMtaDevTypeIdentifier,
               ifPhysAddress,
               pktcMtaDevCorrelationId
Top   ToC   RFC4682 - Page 45
       }
       STATUS   current
       DESCRIPTION
           " This INFORM notification is issued by the MTA to initiate
             the PacketCable provisioning process when the MTA SNMP
             enrollment mechanism is used.
             It contains the system description, the current software
             version, the MTA device type identifier, the MTA MAC
             address (obtained in the MTA ifTable in the ifPhysAddress
             object that corresponds to the ifIndex 1), and a
             correlation ID."
       ::= { pktcMtaNotification 1 }

   pktcMtaDevProvisioningStatus  NOTIFICATION-TYPE
       OBJECTS {
               ifPhysAddress,
               pktcMtaDevCorrelationId,
               pktcMtaDevProvisioningState
       }
       STATUS      current
       DESCRIPTION
           " This INFORM notification may be issued by the MTA to
             confirm the completion of the PacketCable provisioning
             process, and to report its provisioning completion
             status.
             It contains the MTA MAC address (obtained in the MTA
             ifTable in the ifPhysAddress object that corresponds
             to the ifIndex 1), a correlation ID and the MTA
             provisioning state as defined in
             pktcMtaDevProvisioningState."
       ::= { pktcMtaNotification 2 }

   --
   -- Compliance Statements
   --

   pktcMtaCompliances  OBJECT IDENTIFIER ::= { pktcMtaConformance 1 }
   pktcMtaGroups       OBJECT IDENTIFIER ::= { pktcMtaConformance 2 }

   pktcMtaBasicCompliance MODULE-COMPLIANCE
       STATUS      current
       DESCRIPTION
           " The compliance statement for MTA devices that implement
             PacketCable or IPCablecom requirements.

             This compliance statement applies to MTA implementations
             that support PacketCable 1.0 or IPCablecom requirements,
             which are not IPv6-capable at the time of this
Top   ToC   RFC4682 - Page 46
             RFC publication."

       MODULE  -- Unconditionally mandatory groups for MTAs

           MANDATORY-GROUPS {
               pktcMtaGroup,
               pktcMtaNotificationGroup
           }

           OBJECT  pktcMtaDevDhcpServerAddressType
               SYNTAX      InetAddressType { ipv4(1) }
               DESCRIPTION
                   " Support for address types other than 'ipv4(1)'
               is not presently specified and therefore is not
               required.  It may be defined in future versions of
               this MIB module."

           OBJECT  pktcMtaDevDnsServerAddressType
               SYNTAX      InetAddressType { ipv4(1) }
               DESCRIPTION
                   " Support for address types other than 'ipv4(1)'
               is not presently specified and therefore is not
               required.  It may be defined in future versions of
               this MIB module."

           OBJECT  pktcMtaDevTimeServerAddressType
               SYNTAX      InetAddressType { ipv4(1) }
               DESCRIPTION
                   " Support for address types other than 'ipv4(1)'
               is not presently specified and therefore is not
               required.  It may be defined in future versions of
               this MIB module."

           OBJECT    pktcMtaDevServerDhcp1
               SYNTAX  InetAddress (SIZE(4))
               DESCRIPTION
                    "An implementation is only required to support IPv4
               addresses.  Other address types support may be defined in
               future versions of this MIB module."

           OBJECT    pktcMtaDevServerDhcp2
               SYNTAX  InetAddress (SIZE(4))
               DESCRIPTION
                    "An implementation is only required to support IPv4
               addresses.  Other address types support may be defined in
               future versions of this MIB module."

           OBJECT    pktcMtaDevServerDns1
Top   ToC   RFC4682 - Page 47
               SYNTAX  InetAddress (SIZE(4))
               DESCRIPTION
                    "An implementation is only required to support IPv4
               addresses.  Other address types support may be defined in
               future versions of this MIB module."

           OBJECT    pktcMtaDevServerDns2
               SYNTAX  InetAddress (SIZE(4))
               DESCRIPTION
                    "An implementation is only required to support IPv4
               addresses.  Other address types support may be defined in
               future versions of this MIB module."

           OBJECT    pktcMtaDevTimeServer
               SYNTAX  InetAddress (SIZE(4))
               DESCRIPTION
                    "An implementation is only required to support IPv4
               addresses.  Other address types support may be defined in
               future versions of this MIB module."

           OBJECT    pktcMtaDevProvConfigEncryptAlg
               SYNTAX  PktcMtaDevProvEncryptAlg
               DESCRIPTION
                    "An implementation is only required to support
               values of none(0) and des64Cbcmode(1).
               An IV of zero is used to encrypt in des64Cbcmode, and
               the length of pktcMtaDevProvConfigKey is 64 bits, as
               defined in the PacketCable Security specification.
               Other encryption types may be defined in future
               versions of this MIB module."

           OBJECT pktcMtaDevRealmOrgName
               SYNTAX LongUtf8String (SIZE (1..384))
               DESCRIPTION
                    "The Organization Name field in X.509 certificates
               can contain up to 64 UTF-8 encoded characters,
               as defined in RFCs 3280 and 4630.  Therefore, compliant
               devices are only required to support Organization
               Name values of up to 64 UTF-8 encoded characters.
               Given that RFCs 3280 and 4630 define the UTF-8 encoding,
               compliant devices must support a maximum size of 384
               octets for pktcMtaDevRealmOrgName.  The calculation of
               384 octets comes from the RFC 3629 UTF-8 encoding
               definition whereby the UTF-8 encoded characters
               are encoded as sequences of 1 to 6 octets,
               assuming that code points as high as 0x7ffffffff
               might be used.  Subsequent versions of Unicode and ISO
               10646 have limited the upper bound to 0x10ffff.
Top   ToC   RFC4682 - Page 48
               Consequently, the current version of UTF-8, defined in
               RFC 3629, does not require more than four octets to
               encode a valid code point."

       ::= { pktcMtaCompliances 1 }

   pktcMtaGroup OBJECT-GROUP
       OBJECTS {
               pktcMtaDevResetNow,
               pktcMtaDevSerialNumber,
               pktcMtaDevSwCurrentVers,
               pktcMtaDevFQDN,
               pktcMtaDevEndPntCount,
               pktcMtaDevEnabled,
               pktcMtaDevProvisioningCounter,
               pktcMtaDevErrorOid,
               pktcMtaDevErrorValue,
               pktcMtaDevErrorReason,
               pktcMtaDevTypeIdentifier,
               pktcMtaDevProvisioningState,
               pktcMtaDevHttpAccess,
               pktcMtaDevCertificate,
               pktcMtaDevCorrelationId,
               pktcMtaDevManufacturerCertificate,
               pktcMtaDevDhcpServerAddressType,
               pktcMtaDevDnsServerAddressType,
               pktcMtaDevTimeServerAddressType,
               pktcMtaDevProvConfigEncryptAlg,
               pktcMtaDevServerDhcp1,
               pktcMtaDevServerDhcp2,
               pktcMtaDevServerDns1,
               pktcMtaDevServerDns2,
               pktcMtaDevTimeServer,
               pktcMtaDevConfigFile,
               pktcMtaDevSnmpEntity,
               pktcMtaDevRealmPkinitGracePeriod,
               pktcMtaDevRealmTgsGracePeriod,
               pktcMtaDevRealmAvailSlot,
               pktcMtaDevRealmName,
               pktcMtaDevRealmOrgName,
               pktcMtaDevRealmUnsolicitedKeyMaxTimeout,
               pktcMtaDevRealmUnsolicitedKeyNomTimeout,
               pktcMtaDevRealmUnsolicitedKeyMaxRetries,
               pktcMtaDevRealmStatus,
               pktcMtaDevCmsAvailSlot,
               pktcMtaDevCmsFqdn,
               pktcMtaDevCmsKerbRealmName,
               pktcMtaDevCmsUnsolicitedKeyMaxTimeout,
Top   ToC   RFC4682 - Page 49
               pktcMtaDevCmsUnsolicitedKeyNomTimeout,
               pktcMtaDevCmsUnsolicitedKeyMaxRetries,
               pktcMtaDevCmsSolicitedKeyTimeout,
               pktcMtaDevCmsMaxClockSkew,
               pktcMtaDevCmsIpsecCtrl,
               pktcMtaDevCmsStatus,
               pktcMtaDevResetKrbTickets,
               pktcMtaDevProvUnsolicitedKeyMaxTimeout,
               pktcMtaDevProvUnsolicitedKeyNomTimeout,
               pktcMtaDevProvUnsolicitedKeyMaxRetries,
               pktcMtaDevProvKerbRealmName,
               pktcMtaDevProvSolicitedKeyTimeout,
               pktcMtaDevProvConfigHash,
               pktcMtaDevProvConfigKey,
               pktcMtaDevProvState,
               pktcMtaDevProvisioningTimer,
               pktcMtaDevTelephonyRootCertificate
       }
       STATUS      current
       DESCRIPTION
           " A collection of objects for managing PacketCable or
             IPCablecom MTA implementations."
       ::= { pktcMtaGroups 1 }

   pktcMtaNotificationGroup          NOTIFICATION-GROUP
       NOTIFICATIONS {
                     pktcMtaDevProvisioningStatus,
                     pktcMtaDevProvisioningEnrollment
       }
       STATUS      current
       DESCRIPTION
           " A collection of notifications dealing with the change of
             MTA provisioning status."
       ::= { pktcMtaGroups 2 }

   pktcMtaBasicSmtaCompliance MODULE-COMPLIANCE
       STATUS      current
       DESCRIPTION
           " The compliance statement for S-MTA devices
             that implement PacketCable or IPCablecom requirements.

             This compliance statement applies to S-MTA implementations
             that support PacketCable or IPCablecom requirements,
             which are not IPv6-capable at the time of this
             RFC publication."

      MODULE -- Unconditionally Mandatory Groups for S-MTA devices
           MANDATORY-GROUPS {
Top   ToC   RFC4682 - Page 50
               pktcMtaGroup,
               pktcMtaNotificationGroup
           }

           OBJECT  pktcMtaDevDhcpServerAddressType
               SYNTAX      InetAddressType { ipv4(1) }
               DESCRIPTION
                   " Support for address types other than 'ipv4(1)'
               is not presently specified and therefore is not
               required.  It may be defined in future versions of
               this MIB module."

           OBJECT  pktcMtaDevDnsServerAddressType
               SYNTAX      InetAddressType { ipv4(1) }
               DESCRIPTION
                   " Support for address types other than 'ipv4(1)'
               is not presently specified and therefore is not
               required.  It may be defined in future versions of
               this MIB module."

           OBJECT  pktcMtaDevTimeServerAddressType
               SYNTAX      InetAddressType { ipv4(1) }
               DESCRIPTION
                   " Support for address types other than 'ipv4(1)'
               is not presently specified and therefore is not
               required.  It may be defined in future versions of
               this MIB module."

           OBJECT    pktcMtaDevServerDhcp1
               SYNTAX  InetAddress (SIZE(4))
               DESCRIPTION
                    "An implementation is only required to support IPv4
               addresses.  Other address types support may be defined in
               future versions of this MIB module."

           OBJECT    pktcMtaDevServerDhcp2
               SYNTAX  InetAddress (SIZE(4))
               DESCRIPTION
                    "An implementation is only required to support IPv4
               addresses.  Other address types support may be defined in
               future versions of this MIB module."

           OBJECT    pktcMtaDevServerDns1
               SYNTAX  InetAddress (SIZE(4))
               DESCRIPTION
                    "An implementation is only required to support IPv4
               addresses.  Other address types support may be defined in
               future versions of this MIB module."
Top   ToC   RFC4682 - Page 51
           OBJECT    pktcMtaDevServerDns2
               SYNTAX  InetAddress (SIZE(4))
               DESCRIPTION
                    "An implementation is only required to support IPv4
               addresses.  Other address types support may be defined in
               future versions of this MIB module."

           OBJECT    pktcMtaDevTimeServer
               SYNTAX  InetAddress (SIZE(4))
               DESCRIPTION
                    "An implementation is only required to support IPv4
               addresses.  Other address types support may be defined in
               future versions of this MIB module."

           OBJECT    pktcMtaDevProvConfigEncryptAlg
               SYNTAX  PktcMtaDevProvEncryptAlg
               DESCRIPTION
                    "An implementation is only required to support
               values of none(0) and des64Cbcmode(1).
               An IV of zero is used to encrypt in des64Cbcmode, and
               the length of pktcMtaDevProvConfigKey is 64 bits, as
               defined in the PacketCable Security specification.
               Other encryption types may be defined in future
               versions of this MIB module."

           OBJECT pktcMtaDevRealmOrgName
               SYNTAX LongUtf8String (SIZE (1..384))
               DESCRIPTION
                    "The Organization Name field in X.509 certificates
               can contain up to 64 UTF-8 encoded characters, as
               defined in RFCs 3280 and 4630.  Therefore, compliant
               devices are only required to support Organization
               Name values of up to 64 UTF-8 encoded characters.
               Given that RFCs 3280 and 4630 define the UTF-8 encoding,
               compliant devices must support a maximum size of 384
               octets for pktcMtaDevRealmOrgName.  The calculation of
               384 octets comes from the RFC 3629 UTF-8 encoding
               definition whereby the UTF-8 encoded characters
               are encoded as sequences of 1 to 6 octets,
               assuming that code points as high as 0x7ffffffff
               might be used.  Subsequent versions of Unicode and ISO
               10646 have limited the upper bound to 0x10ffff.
               Consequently, the current version of UTF-8, defined in
               RFC 3629 does not require more than four octets to
               encode a valid code point."
       MODULE DOCS-CABLE-DEVICE-MIB
           MANDATORY-GROUPS {
Top   ToC   RFC4682 - Page 52
               docsDevSoftwareGroupV2
           }

       MODULE DOCS-IETF-BPI2-MIB
           MANDATORY-GROUPS {
               docsBpi2CodeDownloadGroup
           }

        ::= { pktcMtaCompliances 2 }

   END

5. Acknowledgements

The current editors would like to thank the members of the IETF IPCDN working group and the CableLabs PacketCable Provisioning and OSS focus team for their comments and suggestions. In particular, we wish to express our gratitude for the contributions made by the following individuals (in no particular order): Angela Lyda,Sumanth Channabasappa, Matt A. Osman, Klaus Hermanns, Paul Duffy, Rick Vetter, Sasha Medvinsky, Roy Spitzer, Itay Sherman, Satish Kumar and Eric Rosenfeld. Finally, special thanks to our area director Bert Wijnen, Rich Woundy, Randy Presuhn, Mike Heard, and Dave Thaler.

6. Security Considerations

There are a number of management objects defined in this MIB module with a MAX-ACCESS clause of read-write and/or read-create. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations. Improper manipulation of the objects defined in this MIB may result in random behavior of MTA devices and may result in service disruption. These are the tables and objects and their sensitivity/vulnerability: - The following objects, if SET maliciously, would cause the MTA device to reset and/or stop its service: pktcMtaDevResetNow. pktcMtaDevEnabled. - All writable objects in the pktcMtaDevServer group and some in the pktcMtaDevRealmTable share the potential, if SET maliciously, to prevent the MTA from provisioning properly. Thus, they are considered very sensitive for service delivery. The objects in question are:
Top   ToC   RFC4682 - Page 53
         pktcMtaDevProvisioningTimer,
         pktcMtaDevDhcpServerAddressType,
         pktcMtaDevDnsServerAddressType,
         pktcMtaDevTimeServerAddressType,
         pktcMtaDevProvConfigEncryptAlg,
         pktcMtaDevServerDns1,
         pktcMtaDevServerDns2,
         pktcMtaDevTimeServer,
         pktcMtaDevConfigFile,
         pktcMtaDevProvConfigHash,
         pktcMtaDevProvConfigKey,
         pktcMtaDevProvSolicitedKeyTimeout,
         pktcMtaDevRealmName,
         pktcMtaDevRealmOrgName,
         pktcMtaDevRealmUnsolicitedKeyMaxTimeout,
         pktcMtaDevRealmUnsolicitedKeyNomTimeout,
         pktcMtaDevRealmUnsolicitedKeyMaxRetries, and
         pktcMtaDevRealmStatus.

   Certain of the above objects have additional specific
   vulnerabilities:

      o  pktcMtaDevServerDns1 and pktcMtaDevServerDns2, if SET
         maliciously, could prevent the MTA from being authenticated and
         consequently from getting telephony services.

      o  pktcMtaDevRealmStatus, if SET maliciously, could cause the
         whole row of the table to be deleted, which may prevent MTA
         from getting telephony services.

   -  All writable objects in the pktcMtaDevCmsTable table share the
      potential, if SET maliciously, to disrupt the telephony service by
      altering which Call Management Server the MTA must send signaling
      registration to; in particular:

         pktcMtaDevCmsFqdn,
         pktcMtaDevCmsKerbRealmName,
         pktcMtaDevCmsMaxClockSkew,
         pktcMtaDevCmsSolicitedKeyTimeout,
         pktcMtaDevCmsUnsolicitedKeyMaxTimeout,
         pktcMtaDevCmsUnsolicitedKeyNomTimeout,
         pktcMtaDevCmsUnsolicitedKeyMaxRetries (this object, if set to a
         zero value '0', may prevent the MTA from retrying its attempt
         to establish a Security Association with the CMS), and
         pktcMtaDevCmsStatus.
Top   ToC   RFC4682 - Page 54
   -  Some writable objects in the pktcMtaDevRealmTable table will not
      have an immediate effect on service, if SET maliciously.  However,
      they may impact the service performance and cause avalanche
      attacks on provisioning and Kerberos KDC servers, especially after
      massive device reboots occur.  The objects in question are as
      follows:

      pktcMtaDevResetKrbTickets:  This object, if set to 'true', will
      cause the MTA to request a new Kerberos ticket at reboot.

      pktcMtaDevRealmPkinitGracePeriod, pktcMtaDevRealmTgsGracePeriod:
      These 2 objects, if set to short time periods, will cause the MTA
      to renew its tickets more frequently.

   Some of the readable objects in this MIB module (i.e., objects with a
   MAX-ACCESS other than not-accessible) may be considered sensitive or
   vulnerable in some network environments.  Some of these objects may
   contain information that may be sensitive from a business or customer
   perspective.  It is thus important to control even GET and/or NOTIFY
   access to these objects and possibly to even encrypt the values of
   these objects when sending them over the network via SNMP.

   These are the tables and objects and their sensitivity and
   vulnerability:

   -  Some readable objects in the pktcMtaDevBase, pktcMtaDevServer, and
      pktcMtaDevSecurity groups share the potential, if read
      maliciously, to facilitate Denial-of-Service (DoS) attacks against
      provisioning or Kerberos servers.  The object in question are as
      follows:

      pktcMtaDevServerDhcp1, pktcMtaDevServerDhcp2, and
      pktcMtaDevSnmpEntity.  The values of these objects may be used to
      launch DoS attacks on the Telephony Service Provider DHCP or
      Provisioning servers.

      pktcMtaDevProvKerbRealmName, pktcMtaDevManufacturerCertificate,
      pktcMtaDevCertificate and pktcMtaDevTelephonyRootCertificate.  The
      values of these objects may be used by attackers to launch DoS
      attacks against Kerberos servers.

   -  One additional readable object may expose some security threats:
      pktcMtaDevFQDN.  This object may include sensitive information
      about the domain name, and potentially, the domain topology.

   SNMP versions prior to SNMPv3 did not include adequate security.
   Even if the network itself is secure (for example by using IPSec),
   even then, there is no control as to who on the secure network is
Top   ToC   RFC4682 - Page 55
   allowed to access and GET/SET (read/change/create/delete) the objects
   in this MIB module.

   It is RECOMMENDED that implementers consider the security features as
   provided by the SNMPv3 framework (see Section 8 in [RFC3410]),
   including full support for the SNMPv3 cryptographic mechanisms (for
   authentication and privacy).

   Further, deployment of SNMP versions prior to SNMPv3 is NOT
   RECOMMENDED.  Instead, it is RECOMMENDED to deploy SNMPv3 and to
   enable cryptographic security.  It is then a customer/operator
   responsibility to ensure that the SNMP entity giving access to an
   instance of this MIB module is properly configured to give access to
   the objects only to those principals (users) that have legitimate
   rights to indeed GET or SET (change/create/delete) them.

7. IANA Considerations

The MIB module defined in this document uses the following IANA- assigned OBJECT IDENTIFIER values, recorded in the SMI Numbers registry: Descriptor OBJECT IDENTIFIER value ---------- ----------------------- pktcIetfMtaMib { mib-2 140 }

8. Normative References

[RFC868] Postel, J. and K. Harrenstien, "Time Protocol", STD 26, RFC 868, May 1983. [RFC1350] Sollins, K., "The TFTP Protocol (Revision 2)", STD 33, RFC 1350, July 1992. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC2131] Droms, R., "Dynamic Host Configuration Protocol", RFC 2131, March 1997. [RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor Extensions", RFC 2132, March 1997. [RFC2287] Krupczak, C. and J. Saperia, "Definitions of System-Level Managed Objects for Applications", RFC 2287, February 1998.
Top   ToC   RFC4682 - Page 56
   [RFC2578]        McCloghrie, K., Perkins, D., Schoenwaelder J., Case,
                    J. Rose, M. and S. Waldbusser, "Structure of
                    Management Information Version 2 (SMIv2)", STD 58,
                    RFC 2578, April 1999.

   [RFC2579]        McCloghrie, K., Perkins, D., Schoenwaelder, J. Case,
                    J. Rose, M. and S. Waldbusser, "Textual Conventions
                    for SMIv2", STD 58, RFC 2579, April 1999.

   [RFC2580]        McCloghrie, K., Perkins, D., Schoenwaelder J., Case,
                    J., Rose, M. and S. Waldbusser, "Conformance
                    Statements for SMIv2", STD 58, RFC 2580, April 1999.

   [RFC2616]        Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
                    Masinter, L., Leach, P., and T. Berners-Lee,
                    "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2616,
                    June 1999.

   [RFC2863]        McCloghrie, K. and F. Kastenholz, "The Interfaces
                    Group MIB", RFC 2863, June 2000.

   [RFC3280]        Housley, R., Polk, W., Ford, W., and D. Solo,
                    "Internet X.509 Public Key Infrastructure
                    Certificate and Certificate Revocation List (CRL)
                    Profile", RFC 3280, April 2002.

   [RFC3411]        Harrington, D., Presuhn, R., and B. Wijnen, "An
                    Architecture for Describing Simple Network
                    Management Protocol (SNMP) Management Frameworks",
                    STD 62, RFC 3411, December 2002.

   [RFC3418]        Presuhn, R., "Management Information Base (MIB) for
                    the Simple Network Management Protocol (SNMP)", STD
                    62, RFC 3418, December 2002.

   [RFC3495]        Beser, B. and P. Duffy, "Dynamic Host Configuration
                    Protocol (DHCP) Option for CableLabs Client
                    Configuration", RFC 3495, March 2003.

   [RFC3594]        Duffy, P., "PacketCable Security Ticket Control
                    Sub-Option for the DHCP CableLabs Client
                    Configuration (CCC) Option", RFC 3594, September
                    2003.

   [RFC4001]        Daniele, M., Haberman, B., Routhier, S., and J.
                    Schoenwaelder, "Textual Conventions for Internet
                    Network Addresses", RFC 4001, February 2005.
Top   ToC   RFC4682 - Page 57
   [RFC4131]        Green, S., Ozawa, K., Cardona, E., and A.
                    Katsnelson, "Management Information Base for Data
                    Over Cable Service Interface Specification (DOCSIS)
                    Cable Modems and Cable Modem Termination Systems for
                    Baseline Privacy Plus", RFC 4131, September 2005.

   [RFC4630]        Housley, R. and S. Santesson, "Update to
                    DirectoryString Processing in the Internet X.509
                    Public Key Infrastructure Certificate and
                    Certificate Revocation List (CRL) Profile", RFC
                    4630, August 2006.

   [RFC4639]        Woundy, R. and K. Marez, "Cable Device Management
                    Information Base for Data-Over-Cable Service
                    Interface Specification (DOCSIS) Compliant Cable
                    Modems and Cable Modem Termination Systems", RFC
                    4639, December 2006.

   [PKT-SP-PROV]    Packetcable MTA Device Provisioning Specification,
                    Issued, PKT-SP-PROV-I11-050812, August 2005.
                    http://www.packetcable.com/specifications/
                    http://www.cablelabs.com/specifications/archives/

   [PKT-SP-SEC]     PacketCable Security Specification, Issued, PKT-SP-
                    SEC-I12-050812, August 2005.
                    http://www.packetcable.com/specifications/
                    http://www.cablelabs.com/specifications/archives/

   [ITU-T-J112]     Transmission Systems for Interactive Cable
                    Television Services, Annex B, J.112, ITU-T, March,
                    1998.

   [ITU-T-J168]     IPCablecom Multimedia Terminal Adapter (MTA) MIB
                    requirements, J.168, ITU-T, March, 2001.

9. Informative References

[RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart, "Introduction and Applicability Statements for Internet-Standard Management Framework", RFC 3410, December 2002. [RFC3617] Lear, E., "Uniform Resource Identifier (URI) Scheme and Applicability Statement for the Trivial File Transfer Protocol (TFTP)", RFC 3617, October 2003.
Top   ToC   RFC4682 - Page 58
   [RFC3629]        Yergeau, F., "UTF-8, a transformation format of ISO
                    10646", STD 63, RFC 3629, November 2003.

   [PKT-SP-MIB-MTA] Packetcable MTA MIB Specification, Issued, PKT-SP-
                    MIB-MTA-I10-050812, August 2005.
                    http://www.packetcable.com/specifications/
                    http://www.cablelabs.com/specifications/archives/

   [ETSITS101909-8] ETSI TS 101 909-8: "Access and Terminals (AT);
                    Digital Broadband Cable Access to the Public
                    Telecommunications Network; IP Multimedia Time
                    Critical Services; Part 8: Media Terminal Adaptor
                    (MTA) Management Information Base (MIB)".

   [EN300001]       EN 300 001 V1.5.1 (1998-10):"European Standard
                    (Telecommunications series) Attachments to Public
                    Switched Telephone Network (PSTN); General technical
                    requirements for equipment connected to an analogue
                    subscriber interface in the PSTN".

   [EN300659-1]     EN 300 659-1: "Public Switched Telephone Network
                    (PSTN); Subscriber line protocol over the local loop
                    for display (and related) services; Part 1: On hook
                    data transmission".

   [NCSSIGMIB]      Beacham G., Kumar S., Channabasappa S., "Network
                    Control Signaling (NCS) Signaling MIB for
                    PacketCable and IPCablecom Multimedia Terminal
                    Adapters (MTAs)", Work in Progress, June 2006.
Top   ToC   RFC4682 - Page 59

Authors' Addresses

Eugene Nechamkin Broadcom Corporation, 200 - 13711 International Place Richmond, BC, V6V 2Z8 CANADA Phone: +1 604 233 8500 EMail: enechamkin@broadcom.com Jean-Francois Mule Cable Television Laboratories, Inc. 858 Coal Creek Circle Louisville, Colorado 80027-9750 U.S.A. Phone: +1 303 661 9100 EMail: jf.mule@cablelabs.com
Top   ToC   RFC4682 - Page 60
Full Copyright Statement

   Copyright (C) The IETF Trust (2006).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST,
   AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
   THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
   IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
   PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.