tech-invite   World Map     

IETF     RFCs     Groups     SIP     ABNFs    |    3GPP     Specs     Glossaries     Architecture     IMS     UICC    |    search

RFC 3790

 
 
 

Survey of IPv4 Addresses in Currently Deployed IETF Internet Area Standards Track and Experimental Documents

Part 2 of 2, p. 18 to 49
Prev RFC Part

 


prevText      Top      Up      ToC       Page 18 
4.17.  RFC 2461 Neighbor Discovery for IP Version 6 (IPv6)

   This document defines an IPv6 related specification and has no IPv4
   issues.

4.18.  RFC 2462 IPv6 Stateless Address Autoconfiguration

   This document defines an IPv6 related specification and has no IPv4
   issues.

4.19.  RFC 2463 Internet Control Message Protocol (ICMPv6) for the
       Internet Protocol Version 6 (IPv6) Specification

   This document defines an IPv6 related specification and has no IPv4
   issues.

4.20.  RFC 3596 DNS Extensions to support IP version 6

   This specification defines the AAAA record for IPv6 as well as PTR
   records using the ip6.arpa domain, and as such has no IPv6 issues.

5.  Proposed Standards

   Proposed Standards are introductory level documents.  There are no
   requirements for even a single implementation.  In many cases,
   Proposed are never implemented or advanced in the IETF standards
   process.  They, therefore, are often just proposed ideas that are
   presented to the Internet community.  Sometimes flaws are exposed or
   they are one of many competing solutions to problems.  In these later
   cases, no discussion is presented as it would not serve the purpose
   of this discussion.

5.1.  RFC 1234 Tunneling IPX traffic through IP networks

   The section "Unicast Address Mappings" has the following text:

    For implementations of this memo, the first two octets of the host
    number will always be zero and the last four octets will be the
    node's four octet IP address.  This makes address mapping trivial
    for unicast transmissions: the first two octets of the host number
    are discarded, leaving the normal four octet IP address.  The
    encapsulation code should use this IP address as the destination
    address of the UDP/IP tunnel packet.

   This mapping will not be able to work with IPv6 addresses.

Top      Up      ToC       Page 19 
   There are also numerous discussions on systems keeping a "peer list"
   to map between IP and IPX addresses.  The specifics are not discussed
   in the document and are left to the individual implementation.

   The section "Maximum Transmission Unit" also has some implications on
   IP addressing:

    Although larger IPX packets are possible, the standard maximum
    transmission unit for IPX is 576 octets.  Consequently, 576 octets
    is the recommended default maximum transmission unit for IPX packets
    being sent with this encapsulation technique.  With the eight octet
    UDP header and the 20 octet IP header, the resulting IP packets will
    be 604 octets long.  Note that this is larger than the 576 octet
    maximum size IP implementations are required to accept.  Any IP
    implementation supporting this encapsulation technique must be
    capable of receiving 604 octet IP packets.

    As improvements in protocols and hardware allow for larger,
    unfragmented IP transmission units, the 576 octet maximum IPX packet
    size may become a liability.  For this reason, it is recommended
    that the IPX maximum transmission unit size be configurable in
    implementations of this memo.

5.2.  RFC 1256 ICMP Router Discovery Messages

   This specification defines a mechanism very specific to IPv4.

5.3.  RFC 1277 Encoding Network Addresses to Support Operation over
      Non-OSI Lower Layers

   Section 4.5, "TCP/IP (RFC 1006) Network Specific Format" describes a
   structure that reserves 12 digits for the textual representation of
   an IP address.

   This 12 octet field for decimal versions of IP addresses is
   insufficient for a decimal version of IPv6 addresses.  It is possible
   to define a new encoding using the 20 digit long IP Address + Port +
   Transport Set fields in order to accommodate a binary version of an
   IPv6 address, port number and Transport Set.  There are several
   schemes that could be envisioned.

5.4.  RFC 1332 The PPP Internet Protocol Control Protocol (IPCP)

   This specification defines a mechanism for devices to assign IPv4
   addresses to PPP clients once PPP negotiation is completed.  Section
   3, "IPCP Configuration Options", defines IPCP option types which
   embed the IP address in 4-byte long fields.  This is clearly not
   enough for IPv6.

Top      Up      ToC       Page 20 
   However, the specification is clearly designed to allow new Option
   Types to be added and Should offer no problems for use with IPv6 once
   appropriate options have been defined.

5.5.  RFC 1377 The PPP OSI Network Layer Control Protocol (OSINLCP)

   There are no IPv4 dependencies in this specification.

5.6.  RFC 1378 The PPP AppleTalk Control Protocol (ATCP)

   There are no IPv4 dependencies in this specification.

5.7.  RFC 1469 IP Multicast over Token-Ring Local Area Networks

   This document defines the usage of IPv4 multicast over IEEE 802.5
   Token Ring networks.  This is not compatible with IPv6.

5.8.  RFC 1552 The PPP Internetworking Packet Exchange Control Protocol
      (IPXCP)

   There are no IPv4 dependencies in this specification.

5.9.  RFC 1570 PPP LCP Extensions

   There are no IPv4 dependencies in this specification.

5.10.  RFC 1598 PPP in X.25 PPP-X25

   There are no IPv4 dependencies in this specification.

5.11.  RFC 1618 PPP over ISDN

   There are no IPv4 dependencies in this specification.

5.12.  RFC 1663 PPP Reliable Transmission

   There are no IPv4 dependencies in this specification.

5.13.  RFC 1752 The Recommendation for the IP Next Generation Protocol

   This document defines a road map for IPv6 development and is not
   relevant to this discussion.

5.14.  RFC 1755 ATM Signaling Support for IP over ATM

   There are no IPv4 dependencies in this specification.

Top      Up      ToC       Page 21 
5.15.  RFC 1763 The PPP Banyan Vines Control Protocol (BVCP)

   There are no IPv4 dependencies in this specification.

5.16.  RFC 1764 The PPP XNS IDP Control Protocol (XNSCP)

   There are no IPv4 dependencies in this specification.

5.17.  RFC 1973 PPP in Frame Relay

   There are no IPv4 dependencies in this specification.

5.18.  RFC 1981 Path MTU Discovery for IP version 6

   This specification describes an IPv6 related specification and is not
   discussed in this document.

5.19.  RFC 1982 Serial Number Arithmetic

   There are no IPv4 dependencies in this specification.

5.20.  RFC 1995 Incremental Zone Transfer in DNS

   Although the examples used in this document use IPv4 addresses,
   (i.e., A records) there is nothing in the specification to preclude
   full and proper functionality using IPv6.

5.21.  RFC 1996 A Mechanism for Prompt Notification of Zone Changes (DNS
       NOTIFY)

   There are no IPv4 dependencies in this specification.

5.22.  RFC 2003 IP Encapsulation within IP

   This document is designed for use in IPv4 networks.  There are many
   references to a specified IP version number of 4 and 32-bit
   addresses.  This is incompatible with IPv6.

5.23.  RFC 2004 Minimal Encapsulation within IP

   This document is designed for use in IPv4 networks.  There are many
   references to a specified IP version number of 4 and 32-bit
   addresses.  This is incompatible with IPv6.

5.24.  RFC 2005 Applicability Statement for IP Mobility Support

   This specification documents the interoperation of IPv4 Mobility
   Support; this is not relevant to this discussion.

Top      Up      ToC       Page 22 
5.25.  RFC 2022 Support for Multicast over UNI 3.0/3.1 based ATM
       Networks

   This specification specifically maps IPv4 multicast in UNI based ATM
   networks.  This is incompatible with IPv6.

5.26.  RFC 2043 The PPP SNA Control Protocol (SNACP)

   There are no IPv4 dependencies in this specification.

5.27.  RFC 2097 The PPP NetBIOS Frames Control Protocol (NBFCP)

   There are no IPv4 dependencies in this specification.

5.28.  RFC 2113 IP Router Alert Option

   This document provides a new mechanism for IPv4.  This is
   incompatible with IPv6.

5.29.  RFC 2125 The PPP Bandwidth Allocation Protocol (BAP) / The PPP
       Bandwidth Allocation Control Protocol (BACP)

   There are no IPv4 dependencies in this specification.

5.30.  RFC 2136 Dynamic Updates in the Domain Name System (DNS UPDATE)

   There are no IPv4 dependencies in this specification.

5.31.  RFC 2181 Clarifications to the DNS Specification

   There are no IPv4 dependencies in this specification.  The only
   reference to IP addresses discuss the use of an anycast address, so
   but one can assume that these techniques are IPv6 operable.

5.32.  RFC 2225 Classical IP and ARP over ATM

   From the many references in this document, it is clear that this
   document is designed for IPv4 only.  It is only later in the document
   that it is implicitly stated, as in:

      ar$spln -  length in octets of the source protocol address. Value
                 range is 0 or 4 (decimal).  For IPv4 ar$spln is 4.

      ar$tpln -  length in octets of the target protocol address. Value
                 range is 0 or 4 (decimal).  For IPv4 ar$tpln is 4.

   and:

Top      Up      ToC       Page 23 
      For backward compatibility with previous implementations, a null
      IPv4 protocol address may be received with length = 4 and an
      allocated address in storage set to the value 0.0.0.0.  Receiving
      stations must be liberal in accepting this format of a null IPv4
      address.  However, on transmitting an ATMARP or InATMARP packet, a
      null IPv4 address must only be indicated by the length set to zero
      and must have no storage allocated.

5.33.  RFC 2226 IP Broadcast over ATM Networks

   This document is limited to IPv4 multicasting.  This is incompatible
   with IPv6.

5.34.  RFC 2241 DHCP Options for Novell Directory Services

   This is an extension to an IPv4-only specification.

5.35.  RFC 2242 NetWare/IP Domain Name and Information

   This is an extension to an IPv4-only specification, for example:

      PREFERRED_DSS (code 6)

         Length is (n * 4) and the value is an array of n IP addresses,
         each four bytes in length.  The maximum number of addresses is
         5 and therefore the maximum length value is 20.  The list
         contains the addresses of n NetWare Domain SAP/RIP Server
         (DSS).

      NEAREST_NWIP_SERVER (code 7)

         Length is (n * 4) and the value is an array of n IP addresses,
         each four bytes in length.  The maximum number of addresses is
         5 and therefore the maximum length value is 20.  The list
         contains the addresses of n Nearest NetWare/IP servers.

      PRIMARY_DSS (code 11)

         Length of 4, and the value is a single IP address.  This field
         identifies the Primary Domain SAP/RIP Service server (DSS) for
         this NetWare/IP domain.  NetWare/IP administration utility uses
         this value as Primary DSS server when configuring a secondary
         DSS server.

Top      Up      ToC       Page 24 
5.36.  RFC 2290 Mobile-IPv4 Configuration Option for PPP IPCP

   This document is designed for use with Mobile IPv4.  There are
   numerous referrals to other IP "support" mechanisms (i.e., ICMP
   Router Discover Messages) that specifically refer to the IPv4 of
   ICMP.

5.37.  RFC 2308 Negative Caching of DNS Queries (DNS NCACHE)

   Although there are numerous examples in this document that use IPv4
   "A" records, there is nothing in the specification that limits its
   effectiveness to IPv4.

5.38.  RFC 2331 ATM Signaling Support for IP over ATM - UNI Signaling
       4.0 Update

   There are no IPv4 dependencies in this specification.

5.39.  RFC 2332 NBMA Next Hop Resolution Protocol (NHRP)

   This document is very generic in its design and seems to be able to
   support numerous layer 3 addressing schemes and should include both
   IPv4 and IPv6.

5.40.  RFC 2333 NHRP Protocol Applicability

   This document is very generic in its design and seems to be able to
   support numerous layer 3 addressing schemes and should include both
   IPv4 and IPv6.

5.41.  RFC 2335 A Distributed NHRP Service Using SCSP

   There are no IPv4 dependencies in this specification.

5.42.  RFC 2363 PPP Over FUNI

   There are no IPv4 dependencies in this specification.

5.43.  RFC 2364 PPP Over AAL5

   There are no IPv4 dependencies in this specification.

Top      Up      ToC       Page 25 
5.44.  RFC 2371 Transaction Internet Protocol Version 3.0 (TIPV3)

   This document states:

      TIP transaction manager addresses take the form:

         <hostport><path>

      The <hostport> component comprises:

         <host>[:<port>]

      where <host> is either a <dns name> or an <ip address>; and <port>
      is a decimal number specifying the port at which the transaction
      manager (or proxy) is listening for requests to establish TIP
      connections.  If the port number is omitted, the standard TIP port
      number (3372) is used.

      A <dns name> is a standard name, acceptable to the domain name
      service.  It must be sufficiently qualified to be useful to the
      receiver of the command.

      An <ip address> is an IP address, in the usual form: four decimal
      numbers separated by period characters.

   And further along it states:

      A TIP URL takes the form:

         tip://<transaction manager address>?<transaction string>

      where <transaction manager address> identifies the TIP transaction
      manager (as defined in Section 7 above); and <transaction string>
      specifies a transaction identifier, which may take one of two
      forms (standard or non-standard):

      i. "urn:" <NID> ":" <NSS>

      A standard transaction identifier, conforming to the proposed
      Internet Standard for Uniform Resource Names (URNs), as specified
      by RFC2141; where <NID> is the Namespace Identifier, and <NSS> is
      the Namespace Specific String.  The Namespace ID determines the
      syntactic interpretation of the Namespace Specific String.  The
      Namespace Specific String is a sequence of characters representing
      a transaction identifier (as defined by <NID>).  The rules for
      the contents of these fields are specified by RFC2141 (valid
      characters, encoding, etc.).

Top      Up      ToC       Page 26 
      This format of <transaction string> may be used to express global
      transaction identifiers in terms of standard representations.
      Examples for <NID> might be <iso> or <xopen>, e.g.,

         tip://123.123.123.123/?urn:xopen:xid

       Note that Namespace Ids require registration.

      ii. <transaction identifier>

      A sequence of printable ASCII characters (octets with values in
      the range 32 through 126 inclusive (excluding ":") representing a
      transaction identifier.  In this non-standard case, it is the
      combination of <transaction manager address> and <transaction
      identifier> which ensures global uniqueness, e.g.,

         tip://123.123.123.123/?transid1

   These are incompatible with IPv6.

5.45.  RFC 2464 Transmission of IPv6 Packets over Ethernet Networks

   This specification documents a method for transmitting IPv6 packets
   over Ethernet and is not considered in this discussion.

5.46.  RFC 2467 Transmission of IPv6 Packets over FDDI Networks

   This specification documents a method for transmitting IPv6 packets
   over FDDI and is not considered in this discussion.

5.47.  RFC 2470 Transmission of IPv6 Packets over Token Ring Networks

   This specification documents a method for transmitting IPv6 packets
   over Token Ring and is not considered in this discussion.

5.48.  RFC 2472 IP Version 6 over PPP

   This specification documents a method for transmitting IPv6 packets
   over PPP and is not considered in this discussion.

5.49.  RFC 2473 Generic Packet Tunneling in IPv6 Specification

   This specification documents an IPv6 aware specification and is not
   considered in this discussion.

5.50.  RFC 2484 PPP LCP Internationalization Configuration Option

   There are no IPv4 dependencies in this specification.

Top      Up      ToC       Page 27 
5.51.  RFC 2485 DHCP Option for The Open Group's User Authentication
       Protocol

   This is an extension to an IPv4-only specification.

5.52.  RFC 2486 The Network Access Identifier

   There are no IPv4 dependencies in this specification.

5.53.  RFC 2491 IPv6 over Non-Broadcast Multiple Access (NBMA) Networks

   This specification documents a method for transmitting IPv6 packets
   over NBMA networks and is not considered in this discussion.

5.54.  RFC 2492 IPv6 over ATM Networks

   This specification documents a method for transmitting IPv6 packets
   over ATM networks and is not considered in this discussion.

5.55.  RFC 2497 Transmission of IPv6 Packets over ARCnet Networks

   This specification documents a method for transmitting IPv6 packets
   over ARCnet networks and is not considered in this discussion.

5.56.  RFC 2507 IP Header Compression

   This specification is both IPv4 and IPv6 aware.

5.57.  RFC 2526 Reserved IPv6 Subnet Anycast Addresses

   This specification documents IPv6 addressing and is not discussed in
   this document.

5.58.  RFC 2529 Transmission of IPv6 over IPv4 Domains without Explicit
       Tunnels

   This specification documents IPv6 transmission methods and is not
   discussed in this document.

5.59.  RFC 2563 DHCP Option to Disable Stateless Auto-Configuration in
       IPv4 Clients

   This is an extension to an IPv4-only specification.

Top      Up      ToC       Page 28 
5.60.  RFC 2590 Transmission of IPv6 Packets over Frame Relay Networks
       Specification

   This specification documents IPv6 transmission method over Frame
   Relay and is not discussed in this document.

5.61.  RFC 2601 ILMI-Based Server Discovery for ATMARP

   This specification is both IPv4 and IPv6 aware.

5.62.  RFC 2602 ILMI-Based Server Discovery for MARS

   This specification is both IPv4 and IPv6 aware.

5.63.  RFC 2603 ILMI-Based Server Discovery for NHRP

   This specification is both IPv4 and IPv6 aware.

5.64.  RFC 2610 DHCP Options for Service Location Protocol

   This is an extension to an IPv4-only specification.

5.65.  RFC 2615 PPP over SONET/SDH

   There are no IPv4 dependencies in this specification.

5.66.  RFC 2625 IP and ARP over Fibre Channel

   This document states:

      Objective and Scope:

       The major objective of this specification is to promote
       interoperable implementations of IPv4 over FC.  This
       specification describes a method for encapsulating IPv4 and
       Address Resolution Protocol (ARP) packets over FC.

   This is incompatible with IPv6.

5.67.  RFC 2661 Layer Two Tunneling Protocol (L2TP)

   There are no IPv4 dependencies in this specification.

5.68.  RFC 2671 Extension Mechanisms for DNS (EDNS0)

   There are no IPv4 dependencies in this specification.

Top      Up      ToC       Page 29 
5.69.  RFC 2672 Non-Terminal DNS Name Redirection

   This document is only defined for IPv4 addresses.  An IPv6
   specification may be needed.

5.70.  RFC 2673 Binary Labels in the Domain Name System

   This document is only defined for IPv4 addresses.  An IPv6
   specification may be needed.

5.71.  RFC 2675 IPv6 Jumbograms

   This document defines a IPv6 packet format and is therefore not
   discussed in this document.

5.72.  RFC 2684 Multiprotocol Encapsulation over ATM Adaptation Layer 5

   There are no IPv4 dependencies in this specification.

5.73.  RFC 2685 Virtual Private Networks Identifier

   There are no IPv4 dependencies in this specification.

5.74.  RFC 2686 The Multi-Class Extension to Multi-Link PPP

   There are no IPv4 dependencies in this specification.

5.75.  RFC 2687 PPP in a Real-time Oriented HDLC-like Framing

   There are no IPv4 dependencies in this specification.

5.76.  RFC 2688 Integrated Services Mappings for Low Speed Networks

   There are no IPv4 dependencies in this specification.

5.77.  RFC 2710 Multicast Listener Discovery (MLD) for IPv6

   This document defines an IPv6 specific specification and is not
   discussed in this document.

5.78.  RFC 2711 IPv6 Router Alert Option

   This document defines an IPv6 specific specification and is not
   discussed in this document.

Top      Up      ToC       Page 30 
5.79.  RFC 2728 The Transmission of IP Over the Vertical Blanking
       Interval of a Television Signal

   The following data format is defined:

    0                  1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0|    group    |         uncompressed IP header (20 bytes)     |
   +-+-+-+-+-+-+-+-+                                               +
   |                                                               |
   :                             ....                              :
   +               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               |        uncompressed UDP header (8 bytes)      |
   +-+-+-+-+-+-+-+-+                                               +
   |                                                               |
   +               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               |              payload  (<1472 bytes)           |
   +-+-+-+-+-+-+-+-+                                               +
   |                                                               |
   :                              ....                             :
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                              CRC                              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   This is incompatible with IPv6.

5.80.  RFC 2734 IPv4 over IEEE 1394

   This specification is IPv4 only.

5.81.  RFC 2735 NHRP Support for Virtual Private Networks

   This specification implies only IPv4 operations, but does not seem to
   present any reason that it would not function for IPv6.

5.82.  RFC 2765 Stateless IP/ICMP Translation Algorithm (SIIT)

   This specification defines a method for IPv6 transition and is not
   discussed in this document.

5.83.  RFC 2766 Network Address Translation - Protocol Translation
       (NAT-PT)

   This specification defines a method for IPv6 transition and is not
   discussed in this document.

Top      Up      ToC       Page 31 
5.84.  RFC 2776 Multicast-Scope Zone Announcement Protocol (MZAP)

   This specification is both IPv4 and IPv6 aware and needs no changes.

5.85.  RFC 2782 A DNS RR for specifying the location of services

   There are no IPv4 dependencies in this specification.

5.86.  RFC 2794 Mobile IP Network Access Identifier Extension for IPv4

   This is an extension to an IPv4-only specification.

5.87.  RFC 2834 ARP and IP Broadcast over HIPPI-800

   This document uses the generic term "IP Address" in the text but it
   also contains the text:

      The HARP message has several fields that have the following format
      and values:

       Data sizes and field meaning:
         ar$hrd  16 bits  Hardware type
         ar$pro  16 bits  Protocol type of the protocol fields below
         ar$op   16 bits  Operation code (request, reply, or NAK)
         ar$pln   8 bits  byte length of each protocol address
         ar$rhl   8 bits  requester's HIPPI hardware address length (q)
         ar$thl   8 bits  target's HIPPI hardware address length (x)
         ar$rpa  32 bits  requester's protocol address
         ar$tpa  32 bits  target's protocol address
         ar$rha  qbytes   requester's HIPPI Hardware address
         ar$tha  xbytes   target's HIPPI Hardware address

       Where:
         ar$hrd  - SHALL contain 28. (HIPARP)

         ar$pro  - SHALL contain the IP protocol code 2048 (decimal).

         ar$op   - SHALL contain the operational value (decimal):
                   1  for   HARP_REQUESTs
                   2  for   HARP_REPLYs
                   8  for InHARP_REQUESTs
                   9  for InHARP_REPLYs
                   10 for   HARP_NAK
         ar$pln  - SHALL contain 4.

Top      Up      ToC       Page 32 
       And later:

   31    28        23  21          15        10     7         2   0
   +-----+---------+-+-+-----------+---------+-----+---------+-----+
 0 |      04       |1|0|         000         |      03       |  0  |
   +---------------+-+-+---------------------+---------------+-----+
 1 |                              45                               |
   +-----+-+-------+-----------------------+-----------------------+
 2 |[LA] |W|MsgT= 0|          000          |   Dest. Switch Addr   |
   +-----+-+-------+-----------------------+-----------------------+
 3 |   2   |   2   |          000          |  Source Switch Addr   |
   +---------------+---------------+-------+-----------------------+
 4 |             00 00             |                               |
   +-------------------------------+                               |
 5 |                      Destination ULA                          |
   +-------------------------------+-------------------------------+
 6 |             [LA]              |                               |
   +-------------------------------+                               |
 7 |                         Source ULA                            |
   +===============+===============+===============+===============+
 8 |       AA      |      AA       |       03      |       00      |
   +---------------+---------------+---------------+---------------+
 9 |       00      |      00       |        Ethertype (2054)       |
   +---------------+---------------+-------------------------------+
10 |              hrd (28)         |           pro (2048)          |
   +---------------+---------------+---------------+---------------+
11 |             op (ar$op)        |     pln (6)   |   rhl (q)     |
   +---------------+---------------+---------------+---------------+
12 |    thl = (x)  |   Requester IP Address upper  (24 bits)       |
   +---------------------------------------------------------------+
13 | Req. IP lower |      Target IP Address upper  (24 bits)       |
   +---------------+-----------------------------------------------+
14 | Tgt. IP lower | Requester HIPPI Hardware Address bytes 0 - 2  |
   +---------------+-----------------------------------------------+
15 |         Requester HIPPI Hardware Address bytes 3 - 6          |
   +-----------------------------------------------+---------------+
16 |         Requester HW Address bytes 7 - q      | Tgt HW byte 0 |
   +---------------+---------------+---------------+---------------+
17 |          Target  HIPPI Hardware Address bytes 1 - 4           |
   +---------------------------------------------------------------+
18 |          Target  HIPPI Hardware Address bytes 5 - 8           |
   +---------------+---------------+---------------+---------------+
19 |Tgt HW byte 9-x|     FILL      |     FILL      |     FILL      |
   +---------------+---------------+---------------+---------------+
                        HARP - InHARP Message

   This is incompatible with IPv6.

Top      Up      ToC       Page 33 
5.88.  RFC 2835 IP and ARP over HIPPI-6400

   This document states:

      The Ethertype value SHALL be set as defined in Assigned Numbers:

      IP           0x0800  2048  (16 bits)

    This is limited to IPv4, and similar to the previous section,
    incompatible with IPv6.  There are numerous other points in the
    documents that confirm this assumption.

5.89.  RFC 2855 DHCP for IEEE 1394

   This is an extension to an IPv4-only specification.

5.90.  RFC 2874 DNS Extensions to Support IPv6 Address Aggregation and
       Renumbering

   This document defines a specification to interact with IPv6 and is
   not considered in this document.

5.91.  RFC 2893 Transition Mechanisms for IPv6 Hosts and Routers

   This document defines a transition mechanism for IPv6 and is not
   considered in this document.

5.92.  RFC 2916 E.164 number and DNS

   There are no IPv4 dependencies in this specification.

5.93.  RFC 2937 The Name Service Search Option for DHCP

   This is an extension to an IPv4-only specification.

5.94.  RFC 3004 The User Class Option for DHCP

   This is an extension to an IPv4-only specification.

5.95.  RFC 3011 The IPv4 Subnet Selection Option for DHCP

   This is an extension to an IPv4-only specification.

5.96.  RFC 3021 Using 31-Bit Prefixes for IPv4 P2P Links

   This specification is specific to IPv4 address architecture, where a
   modification is needed to use both addresses of a 31-bit prefix.
   This is possible by IPv6 address architecture, but in most cases not

Top      Up      ToC       Page 34 
   recommended; see RFC 3627, Use of /127 Prefix Length Between Routers
   Considered Harmful.

5.97.  RFC 3024 Reverse Tunneling for Mobile IP, revised

   This is an extension to an IPv4-only specification.

5.98.  RFC 3046 DHCP Relay Agent Information Option

   This is an extension to an IPv4-only specification.

5.99.  RFC 3056 Connection of IPv6 Domains via IPv4 Clouds

   This is an IPv6 related document and is not discussed in this
   document.

5.100.  RFC 3068 An Anycast Prefix for 6to4 Relay Routers

   This is an IPv6 related document and is not discussed in this
   document.

5.101.  RFC 3070 Layer Two Tunneling Protocol (L2TP) over Frame Relay

   There are no IPv4 dependencies in this specification.

5.102.  RFC 3074 DHC Load Balancing Algorithm

   There are no IPv4 dependencies in this specification.

5.103.  RFC 3077 A Link-Layer Tunneling Mechanism for Unidirectional
        Links

   This specification is both IPv4 and IPv6 aware and needs no changes.

5.104.  RFC 3115 Mobile IP Vendor/Organization-Specific Extensions

   This is an extension to an IPv4-only specification.

5.105.  RFC 3145 L2TP Disconnect Cause Information

   There are no IPv4 dependencies in this specification.

5.106.  RFC 3344 IP Mobility Support for IPv4

   There are IPv4 dependencies in this specification.

Top      Up      ToC       Page 35 
5.107.  RFC 3376 Internet Group Management Protocol, Version 3

   This document describes of version of IGMP used for IPv4 multicast.
   This is not compatible with IPv6.

5.108.  RFC 3402 Dynamic Delegation Discovery System (DDDS) Part Two:
        The Algorithm

   There are no IPv4 dependencies in this specification.

5.109.  RFC 3403 Dynamic Delegation Discovery System (DDDS) Part Three:
        The Domain Name System (DNS) Database

   There are no IPv4 dependencies in this specification.

5.110.  RFC 3513 IP Version 6 Addressing Architecture

   This specification documents IPv6 addressing and is not discussed in
   this document.

5.111.  RFC 3518 Point-to-Point Protocol (PPP) Bridging Control
        Protocol (BCP)

   There are no IPv4 dependencies in this specification.

6.  Experimental RFCs

   Experimental RFCs typically define protocols that do not have wide
   scale implementation or usage on the Internet.  They are often
   propriety in nature or used in limited arenas.  They are documented
   to the Internet community in order to allow potential
   interoperability or some other potential useful scenario.  In a few
   cases they are presented as alternatives to the mainstream solution
   to an acknowledged problem.

6.1.  RFC 1149 Standard for the transmission of IP datagrams on avian
      carriers

   There are no IPv4 dependencies in this specification.  In fact the
   flexibility of this specification is such that all versions of IP
   should function within its boundaries, presuming that the packets
   remain small enough to be transmitted with the 256 milligrams weight
   limitations.

6.2.  RFC 1183 New DNS RR Definitions

   There are no IPv4 dependencies in this specification.

Top      Up      ToC       Page 36 
6.3.  RFC 1226 Internet protocol encapsulation of AX.25 frames

   There are no IPv4 dependencies in this specification.

6.4.  RFC 1241 Scheme for an internet encapsulation protocol: Version 1

   This specification defines a specification that assumes IPv4 but does
   not actually have any limitations which would limit its operation in
   an IPv6 environment.

6.5.  RFC 1307 Dynamically Switched Link Control Protocol

   This specification is IPv4 dependent, for example:

   3.1  Control Message Format

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Identifier                   |   Total length                |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Function                     |   Event Status                |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                Endpoint 1                                     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                Endpoint 2                                     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       Message                                 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       Body                                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Endpoint addresses: 32 bits each

   The internet addresses of the two communicating parties for which the
   link is being prepared.

6.6.  RFC 1393 Traceroute Using an IP Option

   This document uses an IPv4 option.  It is therefore limited to IPv4
   networks, and is incompatible with IPv6.

6.7.  RFC 1433 Directed ARP

   There are no IPv4 dependencies in this specification.

Top      Up      ToC       Page 37 
6.8.  RFC 1464 Using the Domain Name System To Store Arbitrary String
      Attributes

   There are no IPv4 dependencies in this specification.

6.9.  RFC 1475 TP/IX: The Next Internet

   This document defines IPv7 and has been abandoned by the IETF as a
   feasible design.  It is not considered in this document.

6.10.  RFC 1561 Use of ISO CLNP in TUBA Environments

   This document defines the use of NSAP addressing and does not use any
   version of IP, so there are no IPv4 dependencies in this
   specification.

6.11.  RFC 1712 DNS Encoding of Geographical Location

   There are no IPv4 dependencies in this specification.

6.12.  RFC 1735 NBMA Address Resolution Protocol (NARP)

   This document defines a specification that is IPv4 specific, for
   example:

   4. Packet Formats

   NARP requests and replies are carried in IP packets as protocol type
   54.  This section describes the packet formats of NARP requests and
   replies:

   NARP Request

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Version    |   Hop Count   |          Checksum             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |    Code       |           Unused              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Destination IP address                     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                      Source IP address                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | NBMA length   |                NBMA address                   |
   +-+-+-+-+-+-+-+-+                                               |
   |                  (variable length)                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Top      Up      ToC       Page 38 
   Source and Destination IP Addresses
     Respectively, these are the IP addresses of the NARP requester
     and the target terminal for which the NBMA address is desired.

   And:

   NARP Reply

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Version    |   Hop Count   |          Checksum             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |      Code     |           Unused              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Destination IP address                     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                      Source IP address                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | NBMA length   |                NBMA address                   |
   +-+-+-+-+-+-+-+-+                                               |
   |                  (variable length)                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Source and Destination IP Address
     Respectively, these are the IP addresses of the NARP requester
     and the target terminal for which the NBMA address is desired.

   This is incompatible with IPv6.

6.13.  RFC 1768 Host Group Extensions for CLNP Multicasting

   This specification defines multicasting for CLNP, which is not an IP
   protocol, and therefore has no IPv4 dependencies.

6.14.  RFC 1788 ICMP Domain Name Messages

   This specification is used for updates to the in-addr.arpa reverse
   DNS maps, and is limited to IPv4.

6.15.  RFC 1797 Class A Subnet Experiment

   This document is specific to IPv4 address architecture, and as such,
   has no IPv6 dependencies.

Top      Up      ToC       Page 39 
6.16.  RFC 1819 Internet Stream Protocol Version 2 (ST2) Protocol
       Specification - Version ST2+

   This specification is IPv4 limited.  In fact it is the definition of
   IPv5.  It has been abandoned by the IETF as feasible design, and is
   not considered in this discussion.

6.17.  RFC 1868 ARP Extension - UNARP

   This specification defines an extension to IPv4 ARP to delete entries
   from ARP caches on a link.

6.18.  RFC 1876 A Means for Expressing Location Information in the
       Domain Name System

   This document defines a methodology for applying this technology
   which is IPv4 dependent.  The specification itself has no IPv4
   dependencies.

6.19.  RFC 1888 OSI NSAPs and IPv6

   This is an IPv6 related document and is not discussed in this
   document.

6.20.  RFC 2009 GPS-Based Addressing and Routing

      The document states:

        The future version of IP (IP v6) will certainly have a
        sufficient number of bits in its addressing space to provide an
        address for even smaller GPS addressable units.  In this
        proposal, however, we assume the current version of IP (IP v4)
        and we make sure that we manage the addressing space more
        economically than that.  We will call the smallest GPS
        addressable unit a GPS-square.

      This specification does not seem to have real IPv4 dependencies.

6.21.  RFC 2143 Encapsulating IP with the SCSI

   This specification will only operate using IPv4.  As stated in the
   document:

      It was decided that the ten byte header offers the greatest
      flexibility for encapsulating version 4 IP datagrams for the
      following reasons: [...]

   This is incompatible with IPv6.

Top      Up      ToC       Page 40 
6.22.  RFC 2345 Domain Names and Company Name Retrieval

   There are no IPv4 dependencies in this specification.

6.23.  RFC 2443 A Distributed MARS Service Using SCSP

   This document gives default values for use on IPv4 networks, but is
   designed to be extensible so it will work with IPv6 with appropriate
   IANA definitions.

6.24.  RFC 2471 IPv6 Testing Address Allocation

   This is an IPv6 related document and is not discussed in this
   document.

6.25.  RFC 2520 NHRP with Mobile NHCs

   This specification is both IPv4 and IPv6 aware and needs no changes.

6.26.  RFC 2521 ICMP Security Failures Messages

   There are no IPv4 dependencies in this specification.

6.27.  RFC 2540 Detached Domain Name System (DNS) Information

   There are no IPv4 dependencies in this specification.

6.28.  RFC 2823 PPP over Simple Data Link (SDL) using SONET/SDH with
       ATM-like framing

   There are no IPv4 dependencies in this specification.

6.29.  RFC 3123 A DNS RR Type for Lists of Address Prefixes

   This specification is both IPv4 and IPv6 aware and needs no changes.

6.30.  RFC 3168 The Addition of Explicit Congestion Notification (ECN)
       to IP

   This specification is both IPv4 and IPv6 aware and needs no changes.

6.31.  RFC 3180 GLOP Addressing in 233/8

   This document is specific to IPv4 multicast addressing.

Top      Up      ToC       Page 41 
7.  Summary of the Results

   In the initial survey of RFCs 52 positives were identified out of a
   total of 186, broken down as follows:

         Standards:                        17 out of  24 or 70.83%
         Draft Standards:                   6 out of  20 or 30.00%
         Proposed Standards:               22 out of 111 or 19.91%
         Experimental RFCs:                 7 out of  31 or 22.58%

   Of those identified many require no action because they document
   outdated and unused protocols, while others are document protocols
   that are actively being updated by the appropriate working groups.
   Additionally there are many instances of standards that should be
   updated but do not cause any operational impact if they are not
   updated.

7.1.  Standards

7.1.1.  RFC 791 Internet Protocol

   RFC 791 has been updated in the definition of IPv6 in RFC 2460.

7.1.2.  RFC 792 Internet Control Message Protocol

   RFC 792 has been updated in the definition of ICMPv6 in RFC 2463.

7.1.3.  RFC 891 DCN Networks

   DCN has long since been ceased to be used, so this specification is
   no longer relevant.

7.1.4.  RFC 894 IP over Ethernet

   This problem has been fixed by RFC 2464, A Method for the
   Transmission of IPv6 Packets over Ethernet Networks.

7.1.5.  RFC 895 IP over experimental Ethernets

   It is believed that experimental Ethernet networks are not being used
   anymore, so the specification is no longer relevant.

7.1.6.  RFC 922 Broadcasting Internet Datagrams in the Presence of
        Subnets

   Broadcasting is not used in IPv6, but similar functionality has been
   included in RFC 3513, IPv6 Addressing Architecture.

Top      Up      ToC       Page 42 
7.1.7.  RFC 950 Internet Standard Subnetting Procedure

   Broadcasting is not used in IPv6, but similar functionality has been
   included in RFC 3513, IPv6 Addressing Architecture.

7.1.8.  RFC 1034 Domain Names: Concepts and Facilities

   The problems have been fixed by defining new resource records for
   IPv6 addresses.

7.1.9.  RFC 1035 Domain Names: Implementation and Specification

   The problems have been fixed by defining new resource records for
   IPv6 addresses.

7.1.10.  RFC 1042 IP over IEEE 802

   This problem has been fixed by RFC 2470, Transmission of IPv6 Packets
   over Token Ring Networks.

7.1.11.  RFC 1044 IP over HyperChannel

   No updated document exists for this specification.  It is unclear
   whether one is needed.

7.1.12.  RFC 1088 IP over NetBIOS

   No updated document exists for this specification.  It is unclear
   whether one is needed.

7.1.13.  RFC 1112 Host Extensions for IP Multicast

   The IPv4-specific parts of RFC 1112 have been updated in RFC 2710,
   Multicast Listener Discovery for IPv6.

7.1.14.  RFC 1122 Requirements for Internet Hosts

   RFC 1122 is essentially a requirements document for IPv4 hosts.
   Similar work is in progress [2].

7.1.15.  RFC 1201 IP over ARCNET

   This problem has been fixed by RFC 2497, A Method for the
   Transmission of IPv6 Packets over ARCnet Networks.

Top      Up      ToC       Page 43 
7.1.16.  RFC 1209 IP over SMDS

   No updated document exists for this specification.  It is unclear
   whether one is needed.

7.1.17.  RFC 1390 Transmission of IP and ARP over FDDI Networks

   This problem has been fixed by RFC 2467, Transmission of IPv6 Packets
   over FDDI Networks.

7.2.  Draft Standards

7.2.1.  RFC 951 Bootstrap Protocol (BOOTP)

   This problem has been fixed by RFC 2462, IPv6 Stateless Address
   Autoconfiguration, and RFC 3315, Dynamic Host Configuration Protocol
   for IPv6 (DHCPv6).

7.2.2.  RFC 1191 Path MTU Discovery

   This problem has been fixed in RFC 1981, Path MTU Discovery for IP
   version 6.

7.2.3.  RFC 1356 Multiprotocol Interconnect on X.25 and ISDN

   This problem can be fixed by defining a new NLPID for IPv6.  Note
   that an NLPID has already been defined in RFC 2427, Multiprotocol
   Interconnect over Frame Relay.

7.2.4.  RFC 1990 The PPP Multilink Protocol (MP)

   A new class identifier ("6") for IPv6 packets has been registered
   with the IANA by the original author, fixing this problem.

7.2.5.  RFC 2067 IP over HIPPI

   No updated document exists for this specification.  It is unclear
   whether one is needed.

7.2.6.  RFC 2131 DHCP

   This problem has been fixed in RFC 3315, Dynamic Host Configuration
   Protocol for IPv6 (DHCPv6).

   Further, the consensus of the DHC WG has been that the options
   defined for DHCPv4 will not be automatically "carried forward" to
   DHCPv6.  Therefore, any further analysis of additionally specified
   DHCPv4 Options has been omitted from this memo.

Top      Up      ToC       Page 44 
7.3.  Proposed Standards

7.3.1.  RFC 1234 Tunneling IPX over IP

   No updated document exists for this specification.  In practice, the
   similar effect can be achieved by the use of a layer 2 tunneling
   protocol.  It is unclear whether an updated document is needed.

7.3.2.  RFC 1256 ICMP Router Discovery

   This problem has been resolved in RFC 2461, Neighbor Discovery for IP
   Version 6 (IPv6).

7.3.3.  RFC 1277 Encoding Net Addresses to Support Operation Over Non
        OSI Lower Layers

   No updated document exists for this specification; the problem might
   be resolved by the creation of a new encoding scheme if necessary.
   It is unclear whether an update is needed.

7.3.4.  RFC 1332 PPP Internet Protocol Control Protocol (IPCP)

   This problem has been resolved in RFC 2472, IP Version 6 over PPP.

7.3.5.  RFC 1469 IP Multicast over Token Ring

   The functionality of this specification has been essentially covered
   in RFC 2470, Transmission of IPv6 Packets over Token Ring Networks.

7.3.6.  RFC 2003 IP Encapsulation within IP

   This problem has been fixed by defining different IP-in-IP
   encapsulation, for example, RFC 2473, Generic Packet Tunneling in
   IPv6 Specification.

7.3.7.  RFC 2004 Minimal Encapsulation within IP

   No updated document exists for this specification.  It is unclear
   whether one is needed.

7.3.8.  RFC 2022 Support for Multicast over UNI 3.0/3.1 based ATM
        Networks

   No updated document exists for this specification.  It is unclear
   whether one is needed.

Top      Up      ToC       Page 45 
7.3.9.  RFC 2113 IP Router Alert Option

   This problem has been fixed in RFC 2711, IPv6 Router Alert Option.

7.3.10.  RFC 2165 SLP

   The problems have been addressed in RFC 3111, Service Location
   Protocol Modifications for IPv6.

7.3.11.  RFC 2225 Classical IP & ARP over ATM

   The problems have been resolved in RFC 2492, IPv6 over ATM Networks.

7.3.12.  RFC 2226 IP Broadcast over ATM

   The problems have been resolved in RFC 2492, IPv6 over ATM Networks.

7.3.13.  RFC 2371 Transaction IPv3

   No updated document exists for this specification.  It is unclear
   whether one is needed.

7.3.14.  RFC 2625 IP and ARP over Fibre Channel

   There is work in progress to fix these problems

7.3.15.  RFC 2672 Non-Terminal DNS Redirection

   No updated document exists for this specification.  It is unclear
   whether one is needed.

7.3.16.  RFC 2673 Binary Labels in DNS

   No updated document exists for this specification.  It is unclear
   whether one is needed.

7.3.17.  IP over Vertical Blanking Interval of a TV Signal (RFC 2728)

   No updated document exists for this specification.  It is unclear
   whether one is needed.

7.3.18.  RFC 2734 IPv4 over IEEE 1394

   This problem has been fixed by RFC 3146, Transmission of IPv6 Packets
   Over IEEE 1394 Networks.

Top      Up      ToC       Page 46 
7.3.19.  RFC 2834 ARP & IP Broadcasts Over HIPPI 800

   No updated document exists for this specification.  It is unclear
   whether one is needed.

7.3.20.  RFC 2835 ARP & IP Broadcasts Over HIPPI 6400

   No updated document exists for this specification.  It is unclear
   whether one is needed.

7.3.21.  RFC 3344 Mobility Support for IPv4

   The problems have been resolved by RFC 3775 and RFC 3776 [3, 4].

   Since the first Mobile IPv4 specification in RFC 2002, a number of
   extensions to it have been specified.  As all of these depend on
   MIPv4, they have been omitted from further analysis in this memo.

7.3.22.  RFC 3376 Internet Group Management Protocol, Version 3

   This problem is being fixed by MLDv2 specification [5].

7.4.  Experimental RFCs

7.4.1.  RFC 1307 Dynamically Switched Link Control Protocol

   No updated document exists for this specification.  It is unclear
   whether one is needed.

7.4.2.  RFC 1393 Traceroute using an IP Option

   This specification relies on the use of an IPv4 option.  No
   replacement document exists, and it is unclear whether one is needed.

7.4.3.  RFC 1735 NBMA Address Resolution Protocol (NARP)

   This functionality has been defined in RFC 2491, IPv6 over Non-
   Broadcast Multiple Access (NBMA) networks and RFC 2332, NBMA Next Hop
   Resolution Protocol (NHRP).

7.4.4.  RFC 1788 ICMP Domain Name Messages

   No updated document exists for this specification.  However, DNS
   Dynamic Updates should provide similar functionality, so an update
   does not seem necessary.

Top      Up      ToC       Page 47 
7.4.5.  RFC 1868 ARP Extension - UNARP

   This mechanism defined a mechanism to purge ARP caches on a link.
   That functionality already exists in RFC 2461, Neighbor Discovery for
   IPv6.

7.4.6.  RFC 2143 IP Over SCSI

   No updated document exists for this specification.  It is unclear
   whether one is needed.

7.4.7.  RFC 3180 GLOP Addressing in 233/8

   Similar functionality is provided by RFC 3306, Unicast-Prefix-based
   IPv6 Multicast Addresses, and no action is necessary.

8.  Security Considerations

   This memo examines the IPv6-readiness of specifications; this does
   not have security considerations in itself.

9.  Acknowledgements

   The author would like to acknowledge the support of the Internet
   Society in the research and production of this document.
   Additionally the author would like to thanks his partner in all ways,
   Wendy M. Nesser.

   The editor, Cleveland Mickles, would like to thank Steve Bellovin and
   Russ Housley for their comments and Pekka Savola for his comments and
   guidance during the editing of this document.  Additionally, he would
   like to thank his wife, Lesia, for her patient support.

   Pekka Savola helped in editing the latest versions of the document.

10.  References

10.1.  Normative References

   [1]  Nesser II, P. and A. Bergstrom, Editor, "Introduction to the
        Survey of IPv4 Addresses in Currently Deployed IETF Standards",
        RFC 3789, June 2004.

Top      Up      ToC       Page 48 
10.2   Informative References

   [2]  Loughney, J., Ed., "IPv6 Node Requirements", Work in Progress,
        January 2004.

   [3]  Johnson, D., Perkins, C. and J. Arkko, "Mobility Support in
        IPv6", RFC 3775, June 2004.

   [4]  Arkko, J., Devarapalli, V. and F. Dupont, "Using IPsec to
        Protect Mobile IPv6 Signaling Between Mobile Nodes and Home
        Agents", RFC 3776, June 2004.

   [5]  Vida, R. and L. Costa, Eds., "Multicast Listener Discovery
        Version 2 (MLDv2) for IPv6", RFC 3810, June 2004.

11.  Authors' Addresses

   Cleveland Mickles, Editor
   Reston, VA  20191
   USA

   EMail: cmickles.ee88@gtalumni.org


   Philip J. Nesser II
   Nesser & Nesser Consulting
   13501 100th Ave NE, #5202
   Kirkland, WA  98034
   USA

   EMail: phil@nesser.com

Top      Up      ToC       Page 49 
12.  Full Copyright Statement

   Copyright (C) The Internet Society (2004).  This document is subject
   to the rights, licenses and restrictions contained in BCP 78, and
   except as set forth therein, the authors retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
   REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE
   INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
   IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed
   to pertain to the implementation or use of the technology
   described in this document or the extent to which any license
   under such rights might or might not be available; nor does it
   represent that it has made any independent effort to identify any
   such rights.  Information on the procedures with respect to
   rights in RFC documents can be found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use
   of such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository
   at http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention
   any copyrights, patents or patent applications, or other
   proprietary rights that may cover technology that may be required
   to implement this standard.  Please address the information to the
   IETF at ietf-ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.