tech-invite   World Map     

3GPP     Specs     Glossaries     Architecture     IMS     UICC       IETF     RFCs     Groups     SIP     ABNFs       Search

RFC 3116

 
 
 

Methodology for ATM Benchmarking

Part 4 of 5, p. 76 to 106
Prev RFC Part       Next RFC Part

 


prevText      Top      Up      ToC       Page 76 
3.2.6. Cell Transfer Delay (CTD)

3.2.6.1. Test Setup

   The cell transfer delay measurements assume that both the transmitter
   and receiver timestamp information is synchronized.  Synchronization
   SHOULD be achieved by supplying a common clock signal (minimum of 100
   Mhz or 10 ns resolution) to both the transmitter and receiver.  The
   maximum timestamp values MUST be recorded to ensure synchronization
   in the case of counter rollover.  The cell transfer delay
   measurements SHOULD utilize the O.191 cell (ITUT-O.191) encapsulated
   in a valid IP packet.  If the O.191 cell is not available, a test
   cell encapsulated in a valid IP packet MAY be used.  The test cell

Top      Up      ToC       Page 77 
   MUST contain a transmit timestamp which can be correlated with a
   receive timestamp.  A description of the test cell MUST be included
   in the test results.  The description MUST include the timestamp
   length (in bits), counter rollover value, and the timestamp accuracy
   (in ns).

3.2.6.2. CTD/Steady Load/One VCC

   Objective: To determine the SUT variation in cell transfer delay with
   one VCC as defined in RFC 2761 "Terminology for ATM Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with one VCC.  The VCC SHOULD
       contain one VPI/VCI.  The VCC MUST be configured as either a CBR,
       VBR, or UBR connection.  The VPI/VCI MUST not be one of the
       reserved ATM signaling channels (e.g., [0,5], [0,16]).

   3)  Send a specific number of IP packets containing timestamps at a
       specific constant rate through the SUT via the defined test VCC.
       Since this test is not a throughput test, the rate should not be
       greater than 90% of line rate.  The IP PDUs MUST be encapsulated
       in AAL5.

   4)  Count the IP packets that are transmitted by the SUT to verify
       connectivity and load.  If the count on the test device is the
       same on the SUT, continue the test; else lower the test device
       traffic rate until the counts are the same.

   5)  Record the packets timestamps at the transmitter and receiver
       ends of the test device.

   Reporting Format:

      The results of the CTD/Steady Load/One VCC test SHOULD be reported
      in a form of text, graph, and histogram.

      The text results SHOULD display the numerical values of the CTD.
      The values given SHOULD include: time period of test in s, test
      VPI/VCI value, total number of cells transmitted and received on
      the given VPI/VCI during the test in positive integers, minimum,
      maximum, and mean CTD during the test in us.

      The graph results SHOULD display the cell transfer delay values.
      The x-coordinate SHOULD be the test run time in either seconds,

Top      Up      ToC       Page 78 
      minutes or days depending on the total length of the test.  The
      x-coordinate time SHOULD be configurable.  The y-coordinate SHOULD
      be the cell transfer delay in us.  The integration time per point
      MUST be indicated.

      The histogram results SHOULD display the cell transfer delay.  The
      x-coordinate SHOULD be the cell transfer delay in us with at least
      256 bins.  The y-coordinate SHOULD be the number of cells observed
      in each bin.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      bearer class of the created VCC MUST also be indicated.

3.2.6.3. CTD/Steady Load/Twelve VCCs

   Objective: To determine the SUT variation in cell transfer delay with
   twelve VCCs as defined in RFC 2761 "Terminology for ATM
   Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with twelve VCCs, using 1 VPI
       and 12 VCIs.  The VCC's MUST be configured as either a CBR, VBR,
       or UBR connection.  The VPI/VCIs MUST not be one of the reserved
       ATM signaling channels (e.g., [0,5], [0,16]).

   3)  Send a specific number of IP packets containing timestamps at a
       specific constant rate through the SUT via the defined test VCCs.
       All of the VPI/VCI pairs will generate traffic at the same
       traffic rate.  Since this test is not a throughput test, the rate
       should not be greater than 90% of line rate.  The IP PDUs MUST be
       encapsulated in AAL5.

   4)  Count the IP packets that are transmitted by the SUT on all VCCs
       to verify connectivity and load.  If the count on the test device
       is the same on the SUT, continue the test; else lower the test
       device traffic rate until the counts are the same.

   5)  Record the packets timestamps at the transmitter and receiver
       ends of the test device for all VCCs.

Top      Up      ToC       Page 79 
   Reporting Format:

      The results of the CTD/Steady Load/Twelve VCCs test SHOULD be
      reported in a form of text, graph, and histograms.

      The text results SHOULD display the numerical values of the CTD.
      The values given SHOULD include: time period of test in s, test
      VPI/VCI values, total number of cells transmitted and received on
      each VCC during the test in positive integers, maximum and minimum
      CTD on each VCC during the test in us, and mean CTD on each VCC in
      us.

      The graph results SHOULD display the cell transfer delay values.
      The x-coordinate SHOULD be the test run time in either seconds,
      minutes or days depending on the total length of the test.  The
      x-coordinate time SHOULD be configurable.  The y-coordinate SHOULD
      be the cell transfer delay for each VCC in ms.  There SHOULD be 12
      curves on the graph, one curves indicated and labeled for each
      VCC.  The integration time per point MUST be indicated.

      The histograms SHOULD display the cell transfer delay.  There will
      be one histogram for each VCC.  The x-coordinate SHOULD be the
      cell transfer delay in us with at least 256 bins.  The y-
      coordinate SHOULD be the number of cells observed in each bin.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      bearer class of the created VCC MUST also be indicated.

3.2.6.4. CTD/Steady Load/Maximum VCCs

   Objective: To determine the SUT variation in cell transfer delay with
   the maximum number VCCs supported on the SUT as defined in RFC 2761
   "Terminology for ATM Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with the maximum number of VCCs
       supported on the SUT.  For example, if the maximum number of VCCs
       supported on the SUT is 1024, define 256 VPIs with 4 VCIs per
       VPI.  The VCC's MUST be configured as either a CBR, VBR, or UBR
       connection.  The VPI/VCIs MUST not be one of the reserved ATM
       signaling channels (e.g., [0,5], [0,16]).

Top      Up      ToC       Page 80 
   3)  Send a specific number of IP packets containing timestamps at a
       specific constant rate through the SUT via the defined test VCCs.
       All of the VPI/VCI pairs will generate traffic at the same
       traffic rate.  Since this test is not a throughput test, the rate
       should not be greater than 90% of line rate.  The IP PDUs MUST be
       encapsulated in AAL5.

   4)  Count the IP packets that are transmitted by the SUT on all VCCs
       to verify connectivity and load.  If the count on the test device
       is the same on the SUT, continue the test; else lower the test
       device traffic rate until the counts are the same.

   5)  Record the packets timestamps at the transmitter and receiver
       ends of the test device for all VCCs.

   Reporting Format:

      The results of the CTD/Steady Load/Maximum VCCs test SHOULD be
      reported in a form of text, graphs, and histograms.

      The text results SHOULD display the numerical values of the CTD.
      The values given SHOULD include: time period of test in s, test
      VPI/VCI values, total number of cells transmitted and received on
      each VCC during the test in positive integers, maximum and minimum
      CTD on each VCC during the test in us, and mean CTD on each VCC in
      us.

      The graph results SHOULD display the cell transfer delay values.
      There will be (Max number of VCCs/10) graphs, with 10 VCCs
      indicated on each graph.  The x-coordinate SHOULD be the test run
      time in either seconds, minutes or days depending on the total
      length of the test.  The x-coordinate time SHOULD be configurable.
      The y-coordinate SHOULD be the cell transfer delay for each VCC in
      us.  There SHOULD be no more than 10 curves on each graph, one
      curve indicated and labeled for each VCC.  The integration time
      per point MUST be indicated.

      The histograms SHOULD display the cell transfer delay.  There will
      be one histogram for each VCC.  The x-coordinate SHOULD be the
      cell transfer delay in us with at least 256 bins.  The y-
      coordinate SHOULD be the number of cells observed in each bin.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      bearer class of the created VCC MUST also be indicated.

Top      Up      ToC       Page 81 
3.2.6.5. CTD/Bursty VBR Load/One VCC

   Objective: To determine the SUT variation in cell transfer delay with
   one VCC as defined in RFC 2761 "Terminology for ATM Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with one VCC.  The VCC SHOULD
       contain one VPI/VCI.  The VCC MUST be configured as either a CBR
       or VBR connection.  The VPI/VCI MUST not be one of the reserved
       ATM signaling channels (e.g., [0,5], [0,16]).

   3)  Send a specific number of IP packets containing timestamps at a
       specific VBR through the SUT via the defined test VCC.  Since
       this test is not a throughput test, the rate should not be
       greater than 90% of line rate.  The IP PDUs MUST be encapsulated
       in AAL5.

   4)  Count the IP packets that are transmitted by the SUT to verify
       connectivity and load.  If the count on the test device is the
       same on the SUT, continue the test; else lower the test device
       traffic rate until the counts are the same.

   5)  Record the packets timestamps at the transmitter and receiver
       ends of the test device.

   Reporting Format:

      The results of the CTD/Bursty VBR Load/One VCC test SHOULD be
      reported in a form of text, graph, and histogram.

      The text results SHOULD display the numerical values of the CTD.
      The values given SHOULD include: time period of test in s, test
      VPI/VCI value, total number of cells transmitted and received on
      the given VPI/VCI during the test in positive integers, minimum,
      maximum, and mean CTD during the test in us.

      The graph results SHOULD display the cell transfer delay values.
      The x-coordinate SHOULD be the test run time in either seconds,
      minutes or days depending on the total length of the test.  The
      x-coordinate time SHOULD be configurable.  The y-coordinate SHOULD
      be the cell transfer delay in us.  The integration time per point
      MUST be indicated.

Top      Up      ToC       Page 82 
      The histogram results SHOULD display the cell transfer delay.  The
      x-coordinate SHOULD be the cell transfer delay in us with at least
      256 bins.  The y-coordinate SHOULD be the number of cells observed
      in each bin.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      PCR, SCR, and MBS MUST be indicated.  The bearer class of the
      created VCC MUST also be indicated.

3.2.6.6. CTD/Bursty VBR Load/Twelve VCCs

   Objective: To determine the SUT variation in cell transfer delay with
   twelve VCCs as defined in RFC 2761 "Terminology for ATM
   Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with twelve VCCs, using 1 VPI
       and 12 VCIs.  The VCC's MUST be configured as either a CBR or VBR
       connection.  The VPI/VCIs MUST not be one of the reserved ATM
       signaling channels (e.g., [0,5], [0,16]).

   3)  Send a specific number of IP packets containing timestamps at a
       specific VBR through the SUT via the defined test VCCs.  All of
       the VPI/VCI pairs will generate traffic at the same traffic rate.
       Since this test is not a throughput test, the rate should not be
       greater than 90% of line rate.  The IP PDUs MUST be encapsulated
       in AAL5.

   4)  Count the IP packets that are transmitted by the SUT on all VCCs
       to verify connectivity and load.  If the count on the test device
       is the same on the SUT, continue the test; else lower the test
       device traffic rate until the counts are the same.

   5)  Record the packets timestamps at the transmitter and receiver
       ends of the test device for all VCCs.

   Reporting Format:

      The results of the CTD/Bursty VBR Load/Twelve VCCs test SHOULD be
      reported in a form of text, graph, and histograms.

Top      Up      ToC       Page 83 
      The text results SHOULD display the numerical values of the CTD.
      The values given SHOULD include: time period of test in s, test
      VPI/VCI values, total number of cells transmitted and received on
      each VCC during the test in positive integers, maximum and minimum
      CTD on each VCC during the test in us, and mean CTD on each VCC in
      us.

      The graph results SHOULD display the cell transfer delay values.
      The x-coordinate SHOULD be the test run time in either seconds,
      minutes or days depending on the total length of the test.  The
      x-coordinate time SHOULD be configurable.  The y-coordinate SHOULD
      be the cell transfer delay for each VCC in ms.  There SHOULD be 12
      curves on the graph, one curves indicated and labeled for each
      VCC.  The integration time per point MUST be indicated.

      The histograms SHOULD display the cell transfer delay.  There will
      be one histogram for each VCC.  The x-coordinate SHOULD be the
      cell transfer delay in us with at least 256 bins.  The y-
      coordinate SHOULD be the number of cells observed in each bin.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      PCR, SCR, and MBS MUST be indicated.  The bearer class of the
      created VCC MUST also be indicated.

3.2.6.7. CTD/Bursty VBR Load/Maximum VCCs

   Objective: To determine the SUT variation in cell transfer delay with
   the maximum number VCCs supported on the SUT as defined in RFC 2761
   "Terminology for ATM Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with the maximum number of VCCs
       supported on the SUT.  For example, if the maximum number of VCCs
       supported on the SUT is 1024, define 256 VPIs with 4 VCIs per
       VPI.  The VCC's MUST be configured as either a CBR or VBR
       connection.  The VPI/VCIs MUST not be one of the reserved ATM
       signaling channels (e.g., [0,5], [0,16]).

   3)  Send a specific number of IP packets containing timestamps at a
       specific VBR through the SUT via the defined test VCCs.  All of
       the VPI/VCI pairs will generate traffic at the same traffic rate.
       Since this test is not a throughput test, the rate should not be

Top      Up      ToC       Page 84 
       greater than 90% of line rate.  The IP PDUs MUST be encapsulated
       in AAL5.

   4)  Count the IP packets that are transmitted by the SUT on all VCCs
       to verify connectivity and load.  If the count on the test device
       is the same on the SUT, continue the test; else lower the test
       device traffic rate until the counts are the same.

   5)  Record the packets timestamps at the transmitter and receiver
       ends of the test device for all VCCs.

   Reporting Format:

      The results of the CTD/Bursty VBR Load/Maximum VCCs test SHOULD be
      reported in a form of text, graphs, and histograms.

      The text results SHOULD display the numerical values of the CTD.
      The values given SHOULD include: time period of test in s, test
      VPI/VCI values, total number of cells transmitted and received on
      each VCC during the test in positive integers, maximum and minimum
      CTD on each VCC during the test in us, and mean CTD on each VCC in
      us.

      The graph results SHOULD display the cell transfer delay values.
      There will be (Max number of VCCs/10) graphs, with 10 VCCs
      indicated on each graph.  The x-coordinate SHOULD be the test run
      time in either seconds, minutes or days depending on the total
      length of the test.  The x-coordinate time SHOULD be configurable.
      The y-coordinate SHOULD be the cell transfer delay for each VCC in
      us.  There SHOULD be no more than 10 curves on each graph, one
      curve indicated and labeled for each VCC.  The integration time
      per point MUST be indicated.

      The histograms SHOULD display the cell transfer delay.  There will
      be one histogram for each VCC.  The x-coordinate SHOULD be the
      cell transfer delay in us with at least 256 bins.  The y-
      coordinate SHOULD be the number of cells observed in each bin.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      PCR, SCR, and MBS MUST be indicated.  The bearer class of the
      created VCC MUST also be indicated.

Top      Up      ToC       Page 85 
3.2.6.8. CTD/Bursty UBR Load/One VCC

   Objective: To determine the SUT variation in cell transfer delay with
   one VCC as defined in RFC 2761 "Terminology for ATM Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with one VCC.  The VCC SHOULD
       contain one VPI/VCI.  The VCC MUST be configured as a UBR
       connection.  The VPI/VCI MUST not be one of the reserved ATM
       signaling channels (e.g., [0,5], [0,16]).

   3)  Send a specific number of IP packets containing timestamps at a
       specific UBR through the SUT via the defined test VCC.  Since
       this test is not a throughput test, the rate should not be
       greater than 90% of line rate.  The IP PDUs MUST be encapsulated
       in AAL5.

   4)  Count the IP packets that are transmitted by the SUT to verify
       connectivity and load.  If the count on the test device is the
       same on the SUT, continue the test; else lower the test device
       traffic rate until the counts are the same.

   5)  Record the packets timestamps at the transmitter and receiver
       ends of the test device.

   Reporting Format:

      The results of the CTD/Bursty UBR Load/One VCC test SHOULD be
      reported in a form of text, graph, and histogram.

      The text results SHOULD display the numerical values of the CTD.
      The values given SHOULD include: time period of test in s, test
      VPI/VCI value, total number of cells transmitted and received on
      the given VPI/VCI during the test in positive integers, minimum,
      maximum, and mean CTD during the test in us.

      The graph results SHOULD display the cell transfer delay values.
      The x-coordinate SHOULD be the test run time in either seconds,
      minutes or days depending on the total length of the test.  The
      x-coordinate time SHOULD be configurable.  The y-coordinate SHOULD
      be the cell transfer delay in us.  The integration time per point
      MUST be indicated.

Top      Up      ToC       Page 86 
      The histogram results SHOULD display the cell transfer delay.  The
      x-coordinate SHOULD be the cell transfer delay in us with at least
      256 bins.  The y-coordinate SHOULD be the number of cells observed
      in each bin.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      bearer class of the created VCC MUST also be indicated.

3.2.6.9. CTD/Bursty UBR Load/Twelve VCCs

   Objective: To determine the SUT variation in cell transfer delay with
   twelve VCCs as defined in RFC 2761 "Terminology for ATM
   Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with twelve VCCs, using 1 VPI
       and 12 VCIs.  The VCC's MUST be configured as a UBR connection.
       The VPI/VCIs MUST not be one of the reserved ATM signaling
       channels (e.g., [0,5], [0,16]).

   3)  Send a specific number of IP packets containing timestamps at a
       specific UBR through the SUT via the defined test VCCs.  All of
       the VPI/VCI pairs will generate traffic at the same traffic rate.
       Since this test is not a throughput test, the rate should not be
       greater than 90% of line rate.  The IP PDUs MUST be encapsulated
       in AAL5.

   4)  Count the IP packets that are transmitted by the SUT on all VCCs
       to verify connectivity and load.  If the count on the test device
       is the same on the SUT, continue the test; else lower the test
       device traffic rate until the counts are the same.

   5)  Record the packets timestamps at the transmitter and receiver
       ends of the test device for all VCCs.

   Reporting Format:

      The results of the CTD/Bursty UBR Load/Twelve VCCs test SHOULD be
      reported in a form of text, graph, and histograms.

      The text results SHOULD display the numerical values of the CTD.
      The values given SHOULD include: time period of test in s, test

Top      Up      ToC       Page 87 
      VPI/VCI values, total number of cells transmitted and received on
      each VCC during the test in positive integers, maximum and minimum
      CTD on each VCC during the test in us, and mean CTD on each VCC in
      us.

      The graph results SHOULD display the cell transfer delay values.
      The x-coordinate SHOULD be the test run time in either seconds,
      minutes or days depending on the total length of the test.  The
      x-coordinate time SHOULD be configurable.  The y-coordinate SHOULD
      be the cell transfer delay for each VCC in ms.  There SHOULD be 12
      curves on the graph, one curves indicated and labeled for each
      VCC.  The integration time per point MUST be indicated.

      The histograms SHOULD display the cell transfer delay.  There will
      be one histogram for each VCC.  The x-coordinate SHOULD be the
      cell transfer delay in us with at least 256 bins.  The y-
      coordinate SHOULD be the number of cells observed in each bin.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      bearer class of the created VCC MUST also be indicated.

3.2.6.10. CTD/Bursty UBR Load/Maximum VCCs

   Objective: To determine the SUT variation in cell transfer delay with
   the maximum number VCCs supported on the SUT as defined in RFC 2761
   "Terminology for ATM Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with the maximum number of VCCs
       supported on the SUT.  For example, if the maximum number of VCCs
       supported on the SUT is 1024, define 256 VPIs with 4 VCIs per
       VPI.  The VCC MUST be configured as a UBR connection.  The
       VPI/VCIs MUST not be one of the reserved ATM signaling channels
       (e.g., [0,5], [0,16]).

   3)  Send a specific number of IP packets containing timestamps at a
       specific UBR through the SUT via the defined test VCCs.  All of
       the VPI/VCI pairs will generate traffic at the same traffic rate.
       Since this test is not a throughput test, the rate should not be
       greater than 90% of line rate.  The IP PDUs MUST be encapsulated
       in AAL5.

Top      Up      ToC       Page 88 
   4)  Count the IP packets that are transmitted by the SUT on all VCCs
       to verify connectivity and load.  If the count on the test device
       is the same on the SUT, continue the test; else lower the test
       device traffic rate until the counts are the same.

   5)  Record the packets timestamps at the transmitter and receiver
       ends of the test device for all VCCs.

   Reporting Format:

      The results of the CTD/Bursty UBR Load/Maximum VCCs test SHOULD be
      reported in a form of text, graphs, and histograms.

      The text results SHOULD display the numerical values of the CTD.
      The values given SHOULD include: time period of test in s, test
      VPI/VCI values, total number of cells transmitted and received on
      each VCC during the test in positive integers, maximum and minimum
      CTD on each VCC during the test in us, and mean CTD on each VCC in
      us.

      The graph results SHOULD display the cell transfer delay values.
      There will be (Max number of VCCs/10) graphs, with 10 VCCs
      indicated on each graph.  The x-coordinate SHOULD be the test run
      time in either seconds, minutes or days depending on the total
      length of the test.  The x-coordinate time SHOULD be configurable.
      The y-coordinate SHOULD be the cell transfer delay for each VCC in
      us.  There SHOULD be no more than 10 curves on each graph, one
      curve indicated and labeled for each VCC.  The integration time
      per point MUST be indicated.

      The histograms SHOULD display the cell transfer delay.  There will
      be one histogram for each VCC.  The x-coordinate SHOULD be the
      cell transfer delay in us with at least 256 bins.  The y-
      coordinate SHOULD be the number of cells observed in each bin.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      bearer class of the created VCC MUST also be indicated.

3.2.6.11. CTD/Mixed Load/Three VCC's

   Objective: To determine the SUT variation in cell transfer delay with
   three VCC's as defined in RFC 2761 "Terminology for ATM
   Benchmarking".

Top      Up      ToC       Page 89 
   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with three VCC's.  Each VCC
       MUST be defined as a different Bearer class: one CBR, one UBR and
       one VBR.  Each VCC SHOULD contain one VPI/VCI.  The VPI/VCI MUST
       not be one of the reserved ATM signaling channels (e.g., [0,5],
       [0,16]).

   3)  Send a specific number of IP packets containing timestamps
       through the SUT via the defined test VCCs.  Each generated VCC
       stream MUST match the corresponding VCC Bearer class.  All of the
       VPI/VCI pairs will generate traffic at the same traffic rate.
       Since this test is not a throughput test, the rate should not be
       greater than 90% of line rate.  The IP PDUs MUST be encapsulated
       in AAL5.

   4)  Count the IP packets that are transmitted by the SUT to verify
       connectivity and load.  If the count on the test device is the
       same on the SUT, continue the test; else lower the test device
       traffic rate until the counts are the same.

   5)  Record the packets timestamps at the transmitter and receiver
       ends of the test device for all VCC's.

   Reporting Format:

      The results of the CTD/Mixed Load/Three VCC test SHOULD be
      reported in a form of text, graph, and histogram.

      The text results SHOULD display the numerical values of the CTD.
      The values given SHOULD include: time period of test in s, test
      VPI/VCI value, total number of cells transmitted and received on
      the given VPI/VCI during the test in positive integers, minimum,
      maximum, and mean CTD during the test in us.

      The graph results SHOULD display the cell transfer delay values.
      The x-coordinate SHOULD be the test run time in either seconds,
      minutes or days depending on the total length of the test.  The
      x-coordinate time SHOULD be configurable.  The y-coordinate SHOULD
      be the cell transfer delay in us.  The integration time per point
      MUST be indicated.

Top      Up      ToC       Page 90 
      The histogram results SHOULD display the cell transfer delay.  The
      x-coordinate SHOULD be the cell transfer delay in us with at least
      256 bins.  The y-coordinate SHOULD be the number of cells observed
      in each bin.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      PCR, SCR, and MBS MUST be indicated.  The bearer class of the
      created VCC MUST also be indicated.

3.2.6.12. CTD/Mixed Load/Twelve VCCs

   Objective: To determine the SUT variation in cell transfer delay with
   twelve VCCs as defined in RFC 2761 "Terminology for ATM
   Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with twelve VCC's.  Each VCC
       MUST be defined as one of the Bearer classes for a total of four
       CBR, four UBR and four VBR VCC's.  Each VCC SHOULD contain one
       VPI/VCI.  The VPI/VCI MUST not be one of the reserved ATM
       signaling channels (e.g., [0,5], [0,16]).

   3)  Send a specific number of IP packets containing timestamps
       through the SUT via the defined test VCCs.  Each generated VCC
       stream MUST match the corresponding VCC Bearer class.  All of the
       VPI/VCI pairs will generate traffic at the same traffic rate.
       Since this test is not a throughput test, the rate should not be
       greater than 90% of line rate.  The IP PDUs MUST be encapsulated
       in AAL5.

   4)  Count the IP packets that are transmitted by the SUT on all VCCs
       to verify connectivity and load.  If the count on the test device
       is the same on the SUT, continue the test; else lower the test
       device traffic rate until the counts are the same.

   5)  Record the packets timestamps at the transmitter and receiver
       ends of the test device for all VCCs.

   Reporting Format:

      The results of the CTD/Mixed Load/Twelve VCCs test SHOULD be
      reported in a form of text, graph, and histograms.

Top      Up      ToC       Page 91 
      The text results SHOULD display the numerical values of the CTD.
      The values given SHOULD include: time period of test in s, test
      VPI/VCI values, total number of cells transmitted and received on
      each VCC during the test in positive integers, maximum and minimum
      CTD on each VCC during the test in us, and mean CTD on each VCC in
      us.

      The graph results SHOULD display the cell transfer delay values.
      The x-coordinate SHOULD be the test run time in either seconds,
      minutes or days depending on the total length of the test.  The
      x-coordinate time SHOULD be configurable.  The y-coordinate SHOULD
      be the cell transfer delay for each VCC in ms.  There SHOULD be 12
      curves on the graph, one curves indicated and labeled for each
      VCC.  The integration time per point MUST be indicated.

      The histograms SHOULD display the cell transfer delay.  There will
      be one histogram for each VCC.  The x-coordinate SHOULD be the
      cell transfer delay in us with at least 256 bins.  The y-
      coordinate SHOULD be the number of cells observed in each bin.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      PCR, SCR, and MBS MUST be indicated.  The bearer class of the
      created VCC MUST also be indicated.

3.2.6.13. CTD/Mixed Load/Maximum VCCs

   Objective: To determine the SUT variation in cell transfer delay with
   the maximum number VCCs supported on the SUT as defined in RFC 2761
   "Terminology for ATM Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with maximum number of VCCs
       supported on the SUT.  For example, if the maximum number of VCCs
       supported on the SUT is 1024, define 256 VPIs with 4 VCIs per
       VPI.  Each VCC MUST be defined as one of the Bearer classes for a
       total of (max VCC/3) CBR, (max VCC/3) UBR and (max VCC/3) VBR
       VCC's.  If the maximum number of VCC's is not divisible by 3, the
       total for each bearer class MUST be within 3 VCC's of each other.
       The VPI/VCI MUST not be one of the reserved ATM signaling
       channels (e.g., [0,5], [0,16]).

Top      Up      ToC       Page 92 
   3)  Send a specific number of IP packets containing timestamps
       through the SUT via the defined test VCCs.  Each generated VCC
       stream MUST match the corresponding VCC Bearer class.  All of the
       VPI/VCI pairs will generate traffic at the same traffic rate.
       Since this test is not a throughput test, the rate should not be
       greater than 90% of line rate.  The IP PDUs MUST be encapsulated
       in AAL5.

   4)  Count the IP packets that are transmitted by the SUT on all VCCs
       to verify connectivity and load.  If the count on the test device
       is the same on the SUT, continue the test; else lower the test
       device traffic rate until the counts are the same.

   5)  Record the packets timestamps at the transmitter and receiver
       ends of the test device for all VCCs.

   Reporting Format:

      The results of the CTD/Mixed Load/Maximum VCCs test SHOULD be
      reported in a form of text, graphs, and histograms.

      The text results SHOULD display the numerical values of the CTD.
      The values given SHOULD include: time period of test in s, test
      VPI/VCI values, total number of cells transmitted and received on
      each VCC during the test in positive integers, maximum and minimum
      CTD on each VCC during the test in us, and mean CTD on each VCC in
      us.

      The graph results SHOULD display the cell transfer delay values.
      There will be (Max number of VCCs/10) graphs, with 10 VCCs
      indicated on each graph.  The x-coordinate SHOULD be the test run
      time in either seconds, minutes or days depending on the total
      length of the test.  The x-coordinate time SHOULD be configurable.
      The y-coordinate SHOULD be the cell transfer delay for each VCC in
      us.  There SHOULD be no more than 10 curves on each graph, one
      curve indicated and labeled for each VCC.  The integration time
      per point MUST be indicated.

      The histograms SHOULD display the cell transfer delay.  There will
      be one histogram for each VCC.  The x-coordinate SHOULD be the
      cell transfer delay in us with at least 256 bins.  The y-
      coordinate SHOULD be the number of cells observed in each bin.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      PCR, SCR, and MBS MUST be indicated.  The bearer class of the
      created VCC MUST also be indicated.

Top      Up      ToC       Page 93 
3.3. ATM Adaptation Layer (AAL) Type 5 (AAL5)

3.3.1. IP Packet Loss due to AAL5 Re-assembly Errors

   Objective: To determine if the SUT will drop IP packets due AAL5 Re-
   assembly Errors as defined in RFC 2761 "Terminology for ATM
   Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the uni-directional
       configuration.

   2)  Send a specific number of cells at a specific rate through the
       SUT.  Since this test is not a throughput test, the rate should
       not be greater than 90% of line rate.  The cell payload SHOULD
       contain valid IP PDUs.  The IP PDUs MUST be encapsulated in AAL5.

   3)  Count the cells that are transmitted by the SUT to verify
       connectivity and load.  If the count on the test device is the
       same on the SUT, continue the test; else lower the test device
       traffic rate until the counts are the same.

   4)  Inject one error in the first bit of the AAL5 payload.  Verify
       that the SUT does not drop any AAL5 PDU's.

   5)  Discontinue the AAL5 payload error.

   6)  Inject one error in the first bit of the AAL5 header for 4
       consecutive IP PDUs in every 6 IP PDUs.  Verify that the SUT does
       drop the AAL5 PDU's.

   7)  Discontinue the AAL5 payload error.

   Reporting Format:

      The results of the AAL5 PDU Loss due to AAL5 PDU errors test
      SHOULD be reported in a form of a table.  The rows SHOULD be
      labeled single error, one error per second, and four consecutive
      errors every 6 IP PDUs.  The columns SHOULD be labeled AAL5 PDU
      loss and number of PDU's lost.  The elements of column 1 SHOULD be
      either True or False, indicating whether the particular condition
      was observed for each test.  The elements of column 2 SHOULD be
      non-negative integers.

      The table MUST also indicate the traffic rate in IP PDUs per
      second as generated by the test device.

Top      Up      ToC       Page 94 
3.3.2. AAL5 Reassembly Time.

   Objective: To determine the SUT AAL5 Reassembly Time as defined in
   RFC 2761 "Terminology for ATM Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the uni-directional
       configuration.

   2)  Send a specific number of IP packets at a specific rate through
       the SUT.  Since this test is not a throughput test, the rate
       should not be greater than 90% of line rate.  The IP PDUs MUST be
       encapsulated in AAL5.  The AAL5 PDU size is 65535 octets or 1365
       ATM cells.

   3)  Count the IP packets that are transmitted by the SUT to verify
       connectivity and load.  If the count on the test device is the
       same on the SUT, continue the test; else lower the test device
       traffic rate until the counts are the same.

   4)  Given an AAL5 reassembly timer of 'x' seconds, where 'x' is the
       actual value of the AAL5 reassembly timer on the SUT, sent
       traffic at 1365 cells per 'x' seconds.  The expected results are
       that no AAL5 PDU's will be dropped.

   5)  Send traffic at 1360 cells per 'x' seconds.  The expected results
       are that all AAL5 PDU's will be dropped.

   Reporting Format:

      The results of the IP packet loss due to AAL5 reassembly timeout
      test SHOULD be reported in a form of a table.  The rows SHOULD be
      labeled 1365 cells per 'x' seconds and 1360 cells per 'x' seconds.
      The columns SHOULD be labeled packet loss and number of packets
      lost.  The elements of column 1 SHOULD be either True or False,
      indicating whether the particular condition was observed for each
      test.  The elements of column 2 SHOULD be non-negative integers.

      The table MUST also indicate the packet size in octets and traffic
      rate in packets per second as generated by the test device,
      including the value of

Top      Up      ToC       Page 95 
3.3.3. AAL5 CRC Error Ratio.

3.3.3.1. Test Setup

   The AAL5 CRC error ratio measurements assume that both the
   transmitter and receiver payload information is synchronized.
   Synchronization MUST be achieved by supplying a known bit pattern to
   both the transmitter and receiver.  If this bit pattern is longer
   than the packet size, the receiver MUST synchronize with the
   transmitter before tests can be run.

3.3.3.2. AAL5-CRC-ER/Steady Load/One VCC

   Objective: To determine the SUT ratio of AAL5 CRC PDU errors on one
   VCC in a transmission in relation to the total AAL5 PDU's sent as
   defined in RFC 2761 "Terminology for ATM Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with one VCC.  The VCC SHOULD
       contain one VPI/VCI.  The VCC MUST be configured as either a CBR,
       VBR, or UBR connection.  The VPI/VCI MUST not be one of the
       reserved ATM signaling channels (e.g., [0,5], [0,16]).

   3)  Send a specific number of IP packets containing one of the
       specified bit patterns at a constant rate through the SUT via the
       defined test VCC.  Since this test is not a throughput test, the
       rate should not be greater than 90% of line rate.  The IP PDUs
       MUST be encapsulated in AAL5.

   4)  Count the IP packets that are transmitted by the SUT to verify
       connectivity and load.  If the count on the test device is the
       same on the SUT, continue the test; else lower the test device
       traffic rate until the counts are the same.

   5)  Record the number of AAL5 CRC errors at the receiver end of the
       test device.

   Reporting Format:

      The results of the AAL5-CRC-ER/Steady Load/One VCC test SHOULD be
      reported in a form of text and graph.

Top      Up      ToC       Page 96 
      The text results SHOULD display the numerical values of the AAL5-
      CRC-ER.  The values given SHOULD include: time period of test in
      s, test VPI/VCI value, total number of AAL5 PDU's transmitted and
      received on the given VPI/VCI during the test in positive
      integers, and the AAL5-CRC-ER for the entire test.

      The graph results SHOULD display the AAL5 CRC error ratio values.
      The x-coordinate SHOULD be the test run time in either seconds,
      minutes or days depending on the total length of the test.  The
      x-coordinate time SHOULD be configurable.  The y-coordinate SHOULD
      be the AAL5-CRC-ER.  The integration time per point MUST be
      indicated.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      PCR, SCR, and MBS MUST be indicated.  The bearer class of the
      created VCC MUST be indicated.  The generated bit pattern MUST
      also be indicated.

3.3.3.3. AAL5-CRC-ER/Steady Load/Twelve VCCs

   Objective: To determine the SUT ratio of AAL5 CRC PDU errors on
   twelve VCC's in a transmission in relation to the total AAL5 PDU's
   sent as defined in RFC 2761 "Terminology for ATM Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with twelve VCCs, using 1 VPI
       and 12 VCIs.  The VCC's MUST be configured as either a CBR, VBR,
       or UBR connection.  The VPI/VCIs MUST not be one of the reserved
       ATM signaling channels (e.g., [0,5], [0,16]).

   3)  Send a specific number of IP packets containing one of the
       specified bit patterns at a constant rate through the SUT via the
       defined test VCCs.  All of the VPI/VCI pairs will generate
       traffic at the same traffic rate.

       Since this test is not a throughput test, the rate should not be
       greater than 90% of line rate.  The IP PDUs MUST be encapsulated
       in AAL5.

Top      Up      ToC       Page 97 
   4)  Count the IP packets that are transmitted by the SUT on all VCCs
       to verify connectivity and load.  If the count on the test device
       is the same on the SUT, continue the test; else lower the test
       device traffic rate until the counts are the same.

   5)  Record the number of AAL5 CRC errors at the receiver end of the
       test device for all VCCs.

   Reporting Format:

      The results of the AAL5-CRC-ER/Steady Load/Twelve VCCs test SHOULD
      be reported in a form of text and graph.

      The text results SHOULD display the numerical values of the AAL5-
      CRC-ER.  The values given SHOULD include: time period of test in
      s, test VPI/VCI value, total number of AAL5 PDU's transmitted and
      received on the given VPI/VCI during the test in positive
      integers, and the AAL5-CRC-ER for the entire test.

      The graph results SHOULD display the AAL5 CRC error ratio values.
      The x-coordinate SHOULD be the test run time in either seconds,
      minutes or days depending on the total length of the test.  The
      x-coordinate time SHOULD be configurable.  The y-coordinate SHOULD
      be the AAL5-CRC-ER for each VCC.  There should be 12 curves on the
      graph, on curve indicated and labeled for each VCC.  The
      integration time per point MUST be indicated.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      PCR, SCR, and MBS MUST be indicated.  The bearer class of the
      created VCC MUST be indicated.  The generated bit pattern MUST
      also be indicated.

3.3.3.4. AAL5-CRC-ER/Steady Load/Maximum VCCs

   Objective: To determine the SUT ratio of AAL5 CRC PDU errors with the
   maximum number VCCs supported on the SUT in a transmission in
   relation to the total AAL5 PDU's sent as defined in RFC 2761
   "Terminology for ATM Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with the maximum number of VCCs
       supported on the SUT.  For example, if the maximum number of VCCs

Top      Up      ToC       Page 98 
       supported on the SUT is 1024, define 256 VPIs with 4 VCIs per
       VPI.  The VCC's MUST be configured as either a CBR, VBR, or UBR
       connection.  The VPI/VCIs MUST not be one of the reserved ATM
       signaling channels (e.g., [0,5], [0,16]).

   3)  Send a specific number of IP packets containing one of the
       specified bit patterns at a constant rate through the SUT via the
       defined test VCCs.  All of the VPI/VCI pairs will generate
       traffic at the same traffic rate.  Since this test is not a
       throughput test, the rate should not be greater than 90% of line
       rate.  The IP PDUs MUST be encapsulated in AAL5.

   4)  Count the IP packets that are transmitted by the SUT on all VCCs
       to verify connectivity and load.  If the count on the test device
       is the same on the SUT, continue the test; else lower the test
       device traffic rate until the counts are the same.

   5)  Record the number of AAL5 CRC errors at the receiver end of the
       test device for all VCCs.

   Reporting Format:

      The results of the AAL5-CRC-ER/Steady Load/Maximum VCCs test
      SHOULD be reported in a form of text and graph.

      The text results SHOULD display the numerical values of the AAL5-
      CRC-ER.  The values given SHOULD include: time period of test in
      s, test VPI/VCI value, total number of AAL5 PDU's transmitted and
      received on the given VPI/VCI during the test in positive
      integers, and the AAL5-CRC-ER for the entire test.

      The graph results SHOULD display the AAL5 CRC error ratio values.
      There will be (Max number of VCCs/10) graphs, with 10 VCCs
      indicated on each graph.  The x-coordinate SHOULD be the test run
      time in either seconds, minutes or days depending on the total
      length of the test.  The x-coordinate time SHOULD be configurable.
      The y-coordinate SHOULD be the AAL5-CRC-ER for each VCC.  There
      SHOULD be no more than 10 curves on each graph, one curve
      indicated and labeled for each VCC.  The integration time per
      point MUST be indicated.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      PCR, SCR, and MBS MUST be indicated.  The bearer class of the
      created VCC MUST be indicated.  The generated bit pattern MUST
      also be indicated.

Top      Up      ToC       Page 99 
3.3.3.5. AAL5-CRC-ER/Bursty VBR Load/One VCC

   Objective: To determine the SUT ratio of AAL5 CRC PDU errors on one
   VCC in a transmission in relation to the total AAL5 PDU's sent as
   defined in RFC 2761 "Terminology for ATM Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with one VCC.  The VCC SHOULD
       contain one VPI/VCI.  The VCC MUST be configured as either a CBR
       or VBR connection.  The VPI/VCI MUST not be one of the reserved
       ATM signaling channels (e.g., [0,5], [0,16]).  The PCR, SCR, and
       MBS must be configured using one of the specified traffic
       descriptors.

   3)  Send a specific number of IP packets containing one of the
       specified bit patterns at a specific VBR rate through the SUT via
       the defined test VCC.  Since this test is not a throughput test,
       the rate should not be greater than 90% of line rate.  The IP
       PDUs MUST be encapsulated in AAL5.

   4)  Count the IP packets that are transmitted by the SUT to verify
       connectivity and load.  If the count on the test device is the
       same on the SUT, continue the test; else lower the test device
       traffic rate until the counts are the same.

   5)  Record the number of AAL5 CRC errors at the receiver end of the
       test device.

   Reporting Format:

      The results of the AAL5-CRC-ER/Bursty VBR Load/One VCC test SHOULD
      be reported in a form of text and graph.

      The text results SHOULD display the numerical values of the AAL5-
      CRC-ER.  The values given SHOULD include: time period of test in
      s, test VPI/VCI value, total number of AAL5 PDU's transmitted and
      received on the given VPI/VCI during the test in positive
      integers, and the AAL5-CRC-ER for the entire test.

      The graph results SHOULD display the AAL5 CRC error ratio values.
      The x-coordinate SHOULD be the test run time in either seconds,
      minutes or days depending on the total length of the test.  The

Top      Up      ToC       Page 100 
      x-coordinate time SHOULD be configurable.  The y-coordinate SHOULD
      be the AAL5-CRC-ER.  The integration time per point MUST be
      indicated.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      PCR, SCR, and MBS MUST be indicated.  The bearer class of the
      created VCC MUST be indicated.  The generated bit pattern MUST
      also be indicated.

3.3.3.6. AAL5-CRC-ER/Bursty VBR Load/Twelve VCCs

   Objective: To determine the SUT ratio of AAL5 CRC PDU errors on
   twelve VCC's in a transmission in relation to the total AAL5 PDU's
   sent as defined in RFC 2761 "Terminology for ATM Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with twelve VCCs, using 1 VPI
       and 12 VCIs.  The VCC's MUST be configured as either a CBR or VBR
       connection.  The VPI/VCIs MUST not be one of the reserved ATM
       signaling channels (e.g., [0,5], [0,16]).  The PCR, SCR, and MBS
       must be configured using one of the specified traffic
       descriptors.

   3)  Send a specific number of IP packets containing one of the
       specified bit patterns at a specific VBR rate through the SUT via
       the defined test VCCs.  All of the VPI/VCI pairs will generate
       traffic at the same traffic rate.  Since this test is not a
       throughput test, the rate should not be greater than 90% of line
       rate.  The PCR, SCR, and MBS must be indicated.  The IP PDUs MUST
       be encapsulated in AAL5.

   4)  Count the IP packets that are transmitted by the SUT on all VCCs
       to verify connectivity and load.  If the count on the test device
       is the same on the SUT, continue the test; else lower the test
       device traffic rate until the counts are the same.

   5)  Record the number of AAL5 CRC errors at the receiver end of the
       test device for all VCCs.

Top      Up      ToC       Page 101 
   Reporting Format:

      The results of the AAL5-CRC-ER/Bursty VBR Load/Twelve VCCs test
      SHOULD be reported in a form of text and graph.

      The text results SHOULD display the numerical values of the AAL5-
      CRC-ER.  The values given SHOULD include: time period of test in
      s, test VPI/VCI value, total number of AAL5 PDU's transmitted and
      received on the given VPI/VCI during the test in positive
      integers, and the AAL5-CRC-ER for the entire test.

      The graph results SHOULD display the AAL5 CRC error ratio values.
      The x-coordinate SHOULD be the test run time in either seconds,
      minutes or days depending on the total length of the test.  The
      x-coordinate time SHOULD be configurable.  The y-coordinate SHOULD
      be the AAL5-CRC-ER for each VCC.  There should be 12 curves on the
      graph, on curve indicated and labeled for each VCC.  The
      integration time per point MUST be indicated.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      PCR, SCR, and MBS MUST be indicated.  The bearer class of the
      created VCC MUST be indicated.  The generated bit pattern MUST
      also be indicated.

3.3.3.7. AAL5-CRC-ER/Bursty VBR Load/Maximum VCCs

   Objective: To determine the SUT ratio of AAL5 CRC PDU errors with the
   maximum number VCCs supported on the SUT in a transmission in
   relation to the total AAL5 PDU's sent as defined in RFC 2761
   "Terminology for ATM Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with the maximum number of VCCs
       supported on the SUT.  For example, if the maximum number of VCCs
       supported on the SUT is 1024, define 256 VPIs with 4 VCIs per
       VPI.  The VCC's MUST be configured as either a CBR or VBR
       connection.  The VPI/VCIs MUST not be one of the reserved ATM
       signaling channels (e.g., [0,5], [0,16]).  The PCR, SCR, and MBS
       must be configured using one of the specified traffic
       descriptors.

Top      Up      ToC       Page 102 
   3)  Send a specific number of IP packets containing one of the
       specified bit patterns at a specific VBR rate through the SUT via
       the defined test VCCs.  All of the VPI/VCI pairs will generate
       traffic at the same traffic rate.  Since this test is not a
       throughput test, the rate should not be greater than 90% of line
       rate.  The IP PDUs MUST be encapsulated in AAL5.

   4)  Count the IP packets that are transmitted by the SUT on all VCCs
       to verify connectivity and load.  If the count on the test device
       is the same on the SUT, continue the test; else lower the test
       device traffic rate until the counts are the same.

   5)  Record the number of AAL5 CRC errors at the receiver end of the
       test device for all VCCs.

   Reporting Format:

      The results of the AAL5-CRC-ER/Bursty VBR Load/Maximum VCCs test
      SHOULD be reported in a form of text and graph.

      The text results SHOULD display the numerical values of the AAL5-
      CRC-ER.  The values given SHOULD include: time period of test in
      s, test VPI/VCI value, total number of AAL5 PDU's transmitted and
      received on the given VPI/VCI during the test in positive
      integers, and the AAL5-CRC-ER for the entire test.

      The graph results SHOULD display the AAL5 CRC error ratio values.
      There will be (Max number of VCCs/10) graphs, with 10 VCCs
      indicated on each graph.  The x-coordinate SHOULD be the test run
      time in either seconds, minutes or days depending on the total
      length of the test.  The x-coordinate time SHOULD be configurable.
      The y-coordinate SHOULD be the AAL5-CRC-ER for each VCC.  There
      SHOULD be no more than 10 curves on each graph, one curve
      indicated and labeled for each VCC.  The integration time per
      point MUST be indicated.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      PCR, SCR, and MBS MUST be indicated.  The bearer class of the
      created VCC MUST be indicated.  The generated bit pattern MUST
      also be indicated.

3.3.3.8. AAL5-CRC-ER/Mixed Load/Three VCC's

   Objective: To determine the SUT ratio of AAL5 CRC PDU errors on three
   VCC's in a transmission in relation to the total AAL5 PDU's sent as
   defined in RFC 2761 "Terminology for ATM Benchmarking".

Top      Up      ToC       Page 103 
   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with three VCC's.  Each VCC
       MUST be defined as a different Bearer class; one CBR, one UBR and
       one VBR.  Each VCC SHOULD contain one VPI/VCI.  The VPI/VCI MUST
       not be one of the reserved ATM signaling channels (e.g., [0,5],
       [0,16]).

   3)  Send a specific number of IP packets containing one of the
       specified bit patterns through the SUT via the defined test VCCs.
       Each generated VCC stream MUST match the corresponding VCC Bearer
       class.  All of the VPI/VCI pairs will generate traffic at the
       same traffic rate.  Since this test is not a throughput test, the
       rate should not be greater than 90% of line rate.  The IP PDUs
       MUST be encapsulated in AAL5.

   4)  Count the IP packets that are transmitted by the SUT to verify
       connectivity and load.  If the count on the test device is the
       same on the SUT, continue the test; else lower the test device
       traffic rate until the counts are the same.

   5)  Record the number of AAL5 CRC errors at the receiver end of the
       test device for all VCCs.

   Reporting Format:

      The results of the AAL5-CRC-ER/Bursty Mixed Load/Three VCCs test
      SHOULD be reported in a form of text and graph.

      The text results SHOULD display the numerical values of the AAL5-
      CRC-ER.  The values given SHOULD include: time period of test in
      s, test VPI/VCI value, total number of AAL5 PDU's transmitted and
      received on the given VPI/VCI during the test in positive
      integers, and the AAL5-CRC-ER for the entire test.

      The graph results SHOULD display the AAL5 CRC error ratio values.
      The x-coordinate SHOULD be the test run time in either seconds,
      minutes or days depending on the total length of the test.  The
      x-coordinate time SHOULD be configurable.  The y-coordinate SHOULD
      be the AAL5-CRC-ER for each VCC.  There should be 12 curves on the
      graph, on curve indicated and labeled for each VCC.  The
      integration time per point MUST be indicated.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the

Top      Up      ToC       Page 104 
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      PCR, SCR, and MBS MUST be indicated.  The bearer class of the
      created VCC MUST be indicated.  The generated bit pattern MUST
      also be indicated.

3.3.3.9. AAL5-CRC-ER/Mixed Load/Twelve VCCs

   Objective: To determine the SUT ratio of AAL5 CRC PDU errors on
   twelve VCC's in a transmission in relation to the total AAL5 PDU's
   sent as defined in RFC 2761 "Terminology for ATM Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with twelve VCC's.  Each VCC
       MUST be defined as one of the Bearer classes for a total of four
       CBR, four UBR and four VBR VCC's.  Each VCC SHOULD contain one
       VPI/VCI.  The VPI/VCI MUST not be one of the reserved ATM
       signaling channels (e.g., [0,5], [0,16]).

   3)  Send a specific number of IP packets containing one of the
       specified bit patterns through the SUT via the defined test VCCs.
       Each generated VCC stream MUST match the corresponding VCC Bearer
       class.  All of the VPI/VCI pairs will generate traffic at the
       same traffic rate.  Since this test is not a throughput test, the
       rate should not be greater than 90% of line rate.  The IP PDUs
       MUST be encapsulated in AAL5.

   4)  Count the IP packets that are transmitted by the SUT on all VCCs
       to verify connectivity and load.  If the count on the test device
       is the same on the SUT, continue the test; else lower the test
       device traffic rate until the counts are the same.

   5)  Record the number of AAL5 CRC errors at the receiver end of the
       test device for all VCCs.

   Reporting Format:

      The results of the AAL5-CRC-ER/Bursty Mixed Load/Twelve VCCs test
      SHOULD be reported in a form of text and graph.

      The text results SHOULD display the numerical values of the AAL5-
      CRC-ER.  The values given SHOULD include: time period of test in
      s, test VPI/VCI value, total number of AAL5 PDU's transmitted and
      received on the given VPI/VCI during the test in positive
      integers, and the AAL5-CRC-ER for the entire test.

Top      Up      ToC       Page 105 
      The graph results SHOULD display the AAL5 CRC error ratio values.
      The x-coordinate SHOULD be the test run time in either seconds,
      minutes or days depending on the total length of the test.  The
      x-coordinate time SHOULD be configurable.  The y-coordinate SHOULD
      be the AAL5-CRC-ER for each VCC.  There should be 12 curves on the
      graph, on curve indicated and labeled for each VCC.  The
      integration time per point MUST be indicated.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      PCR, SCR, and MBS MUST be indicated.  The bearer class of the
      created VCC MUST be indicated.  The generated bit pattern MUST
      also be indicated.

3.3.3.10. AAL5-CRC-ER/Mixed Load/Maximum VCCs

   Objective: To determine the SUT ratio of AAL5 CRC PDU errors with the
   maximum number VCCs supported on the SUT in a transmission in
   relation to the total AAL5 PDU's sent as defined in RFC 2761
   "Terminology for ATM Benchmarking".

   Procedure:

   1)  Set up the SUT and test device using the bi-directional
       configuration.

   2)  Configure the SUT and test device with maximum number of VCCs
       supported on the SUT.  For example, if the maximum number of VCCs
       supported on the SUT is 1024, define 256 VPIs with 4 VCIs per
       VPI.  Each VCC MUST be defined as one of the Bearer classes for a
       total of (max VCC/3) CBR, (max VCC/3) UBR and (max VCC/3) VBR
       VCC's.  The VPI/VCI MUST not be one of the reserved ATM signaling
       channels (e.g., [0,5], [0,16]).

   3)  Send a specific number of IP packets containing one of the
       specified bit patterns through the SUT via the defined test VCCs.
       Each generated VCC stream MUST match the corresponding VCC Bearer
       class.  All of the VPI/VCI pairs will generate traffic at the
       same traffic rate.  Since this test is not a throughput test, the
       rate should not be greater than 90% of line rate.  The IP PDUs
       MUST be encapsulated in AAL5.

   4)  Count the IP packets that are transmitted by the SUT on all VCCs
       to verify connectivity and load.  If the count on the test device
       is the same on the SUT, continue the test; else lower the test
       device traffic rate until the counts are the same.

Top      Up      ToC       Page 106 
   5)  Record the number of AAL5 CRC errors at the receiver end of the
       test device for all VCCs.

   Reporting Format:

      The results of the AAL5-CRC-ER/Bursty Mixed Load/Maximum VCCs test
      SHOULD be reported in a form of text and graph.

      The text results SHOULD display the numerical values of the AAL5-
      CRC-ER.  The values given SHOULD include: time period of test in
      s, test VPI/VCI value, total number of AAL5 PDU's transmitted and
      received on the given VPI/VCI during the test in positive
      integers, and the AAL5-CRC-ER for the entire test.

      The graph results SHOULD display the AAL5 CRC error ratio values.
      There will be (Max number of VCCs/10) graphs, with 10 VCCs
      indicated on each graph.  The x-coordinate SHOULD be the test run
      time in either seconds, minutes or days depending on the total
      length of the test.  The x-coordinate time SHOULD be configurable.
      The y-coordinate SHOULD be the AAL5-CRC-ER for each VCC.  There
      SHOULD be no more than 10 curves on each graph, one curve
      indicated and labeled for each VCC.  The integration time per
      point MUST be indicated.

      The results MUST also indicate the packet size in octets, traffic
      rate in packets per second, and bearer class as generated by the
      test device.  The VCC and VPI/VCI values MUST be indicated.  The
      PCR, SCR, and MBS MUST be indicated.  The bearer class of the
      created VCC MUST be indicated.  The generated bit pattern MUST
      also be indicated.



(page 106 continued on part 5)

Next RFC Part