tech-invite   World Map     

IETF     RFCs     Groups     SIP     ABNFs    |    3GPP     Specs     Glossaries     Architecture     IMS     UICC    |    search

RFC 2292

 
 
 

Advanced Sockets API for IPv6

Part 2 of 3, p. 17 to 42
Prev RFC Part       Next RFC Part

 


prevText      Top      Up      ToC       Page 17 
4.  Ancillary Data

   4.2BSD allowed file descriptors to be transferred between separate
   processes across a UNIX domain socket using the sendmsg() and
   recvmsg() functions.  Two members of the msghdr structure,
   msg_accrights and msg_accrightslen, were used to send and receive the
   descriptors.  When the OSI protocols were added to 4.3BSD Reno in
   1990 the names of these two fields in the msghdr structure were
   changed to msg_control and msg_controllen, because they were used by
   the OSI protocols for "control information", although the comments in
   the source code call this "ancillary data".

   Other than the OSI protocols, the use of ancillary data has been
   rare.  In 4.4BSD, for example, the only use of ancillary data with
   IPv4 is to return the destination address of a received UDP datagram
   if the IP_RECVDSTADDR socket option is set.  With Unix domain sockets
   ancillary data is still used to send and receive descriptors.

   Nevertheless the ancillary data fields of the msghdr structure
   provide a clean way to pass information in addition to the data that
   is being read or written.  The inclusion of the msg_control and
   msg_controllen members of the msghdr structure along with the cmsghdr
   structure that is pointed to by the msg_control member is required by
   the Posix.1g sockets API standard (which should be completed during
   1997).

   In this document ancillary data is used to exchange the following
   optional information between the application and the kernel:

       1.  the send/receive interface and source/destination address,
       2.  the hop limit,
       3.  next hop address,
       4.  Hop-by-Hop options,
       5.  Destination options, and
       6.  Routing header.

   Before describing these uses in detail, we review the definition of
   the msghdr structure itself, the cmsghdr structure that defines an
   ancillary data object, and some functions that operate on the
   ancillary data objects.

Top      Up      ToC       Page 18 
4.1.  The msghdr Structure

   The msghdr structure is used by the recvmsg() and sendmsg()
   functions.  Its Posix.1g definition is:

    struct msghdr {
      void      *msg_name;        /* ptr to socket address structure */
      socklen_t  msg_namelen;     /* size of socket address structure */
      struct iovec  *msg_iov;     /* scatter/gather array */
      size_t     msg_iovlen;      /* # elements in msg_iov */
      void      *msg_control;     /* ancillary data */
      socklen_t  msg_controllen;  /* ancillary data buffer length */
      int        msg_flags;       /* flags on received message */
    };

   The structure is declared as a result of including <sys/socket.h>.

   (Note: Before Posix.1g the two "void *" pointers were typically "char
   *", and the two socklen_t members and the size_t member were
   typically integers.  Earlier drafts of Posix.1g had the two socklen_t
   members as size_t, but Draft 6.6 of Posix.1g, apparently the final
   draft, changed these to socklen_t to simplify binary portability for
   64-bit implementations and to align Posix.1g with X/Open's Networking
   Services, Issue 5.  The change in msg_control to a "void *" pointer
   affects any code that increments this pointer.)

   Most Berkeley-derived implementations limit the amount of ancillary
   data in a call to sendmsg() to no more than 108 bytes (an mbuf).
   This API requires a minimum of 10240 bytes of ancillary data, but it
   is recommended that the amount be limited only by the buffer space
   reserved by the socket (which can be modified by the SO_SNDBUF socket
   option).  (Note: This magic number 10240 was picked as a value that
   should always be large enough.  108 bytes is clearly too small as the
   maximum size of a Type 0 Routing header is 376 bytes.)

4.2.  The cmsghdr Structure

   The cmsghdr structure describes ancillary data objects transferred by
   recvmsg() and sendmsg().  Its Posix.1g definition is:

    struct cmsghdr {
      socklen_t  cmsg_len;   /* #bytes, including this header */
      int        cmsg_level; /* originating protocol */
      int        cmsg_type;  /* protocol-specific type */
                 /* followed by unsigned char cmsg_data[]; */
    };

   This structure is declared as a result of including <sys/socket.h>.

Top      Up      ToC       Page 19 
   As shown in this definition, normally there is no member with the
   name cmsg_data[].  Instead, the data portion is accessed using the
   CMSG_xxx() macros, as described shortly.  Nevertheless, it is common
   to refer to the cmsg_data[] member.

   (Note: Before Posix.1g the cmsg_len member was an integer, and not a
   socklen_t.  See the Note in the previous section for why socklen_t is
   used here.)

   When ancillary data is sent or received, any number of ancillary data
   objects can be specified by the msg_control and msg_controllen
   members of the msghdr structure, because each object is preceded by a
   cmsghdr structure defining the object's length (the cmsg_len member).
   Historically Berkeley-derived implementations have passed only one
   object at a time, but this API allows multiple objects to be passed
   in a single call to sendmsg() or recvmsg().  The following example
   shows two ancillary data objects in a control buffer.

|<--------------------------- msg_controllen -------------------------->|
|                                                                       |
|<----- ancillary data object ----->|<----- ancillary data object ----->|
|<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
|                                   |                                   |
|<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
|<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
|                                |  |                                |  |
+-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
|cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
|len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
+-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
 ^
 |
msg_control
points here

   The fields shown as "XX" are possible padding, between the cmsghdr
   structure and the data, and between the data and the next cmsghdr
   structure, if required by the implementation.

4.3.  Ancillary Data Object Macros

   To aid in the manipulation of ancillary data objects, three macros
   from 4.4BSD are defined by Posix.1g: CMSG_DATA(), CMSG_NXTHDR(), and
   CMSG_FIRSTHDR().  Before describing these macros, we show the
   following example of how they might be used with a call to recvmsg().

    struct msghdr   msg;
    struct cmsghdr  *cmsgptr;

Top      Up      ToC       Page 20 
    /* fill in msg */

    /* call recvmsg() */

    for (cmsgptr = CMSG_FIRSTHDR(&msg); cmsgptr != NULL;
         cmsgptr = CMSG_NXTHDR(&msg, cmsgptr)) {
        if (cmsgptr->cmsg_level == ... && cmsgptr->cmsg_type == ... ) {
            u_char  *ptr;

            ptr = CMSG_DATA(cmsgptr);
            /* process data pointed to by ptr */
        }
    }

   We now describe the three Posix.1g macros, followed by two more that
   are new with this API: CMSG_SPACE() and CMSG_LEN().  All these macros
   are defined as a result of including <sys/socket.h>.

4.3.1.  CMSG_FIRSTHDR

       struct cmsghdr *CMSG_FIRSTHDR(const struct msghdr *mhdr);

   CMSG_FIRSTHDR() returns a pointer to the first cmsghdr structure in
   the msghdr structure pointed to by mhdr.  The macro returns NULL if
   there is no ancillary data pointed to the by msghdr structure (that
   is, if either msg_control is NULL or if msg_controllen is less than
   the size of a cmsghdr structure).

   One possible implementation could be

       #define CMSG_FIRSTHDR(mhdr) \
           ( (mhdr)->msg_controllen >= sizeof(struct cmsghdr) ? \
             (struct cmsghdr *)(mhdr)->msg_control : \
             (struct cmsghdr *)NULL )

   (Note: Most existing implementations do not test the value of
   msg_controllen, and just return the value of msg_control.  The value
   of msg_controllen must be tested, because if the application asks
   recvmsg() to return ancillary data, by setting msg_control to point
   to the application's buffer and setting msg_controllen to the length
   of this buffer, the kernel indicates that no ancillary data is
   available by setting msg_controllen to 0 on return.  It is also
   easier to put this test into this macro, than making the application
   perform the test.)

Top      Up      ToC       Page 21 
4.3.2.  CMSG_NXTHDR

       struct cmsghdr *CMSG_NXTHDR(const struct msghdr *mhdr,
                                   const struct cmsghdr *cmsg);

   CMSG_NXTHDR() returns a pointer to the cmsghdr structure describing
   the next ancillary data object.  mhdr is a pointer to a msghdr
   structure and cmsg is a pointer to a cmsghdr structure.  If there is
   not another ancillary data object, the return value is NULL.

   The following behavior of this macro is new to this API: if the value
   of the cmsg pointer is NULL, a pointer to the cmsghdr structure
   describing the first ancillary data object is returned.  That is,
   CMSG_NXTHDR(mhdr, NULL) is equivalent to CMSG_FIRSTHDR(mhdr).  If
   there are no ancillary data objects, the return value is NULL.  This
   provides an alternative way of coding the processing loop shown
   earlier:

struct msghdr  msg;
struct cmsghdr  *cmsgptr = NULL;

/* fill in msg */

/* call recvmsg() */

while ((cmsgptr = CMSG_NXTHDR(&msg, cmsgptr)) != NULL) {
    if (cmsgptr->cmsg_level == ... && cmsgptr->cmsg_type == ... ) {
        u_char  *ptr;

        ptr = CMSG_DATA(cmsgptr);
        /* process data pointed to by ptr */
    }
}

   One possible implementation could be:

    #define CMSG_NXTHDR(mhdr, cmsg) \
        ( ((cmsg) == NULL) ? CMSG_FIRSTHDR(mhdr) : \
          (((u_char *)(cmsg) + ALIGN((cmsg)->cmsg_len) \
                             + ALIGN(sizeof(struct cmsghdr)) > \
            (u_char *)((mhdr)->msg_control) + (mhdr)->msg_controllen) ? \
           (struct cmsghdr *)NULL : \
           (struct cmsghdr *)((u_char *)(cmsg) + ALIGN((cmsg)->cmsg_len))) )

   The macro ALIGN(), which is implementation dependent, rounds its
   argument up to the next even multiple of whatever alignment is
   required (probably a multiple of 4 or 8 bytes).

Top      Up      ToC       Page 22 
4.3.3.  CMSG_DATA

       unsigned char *CMSG_DATA(const struct cmsghdr *cmsg);

   CMSG_DATA() returns a pointer to the data (what is called the
   cmsg_data[] member, even though such a member is not defined in the
   structure) following a cmsghdr structure.

   One possible implementation could be:

       #define CMSG_DATA(cmsg) ( (u_char *)(cmsg) + \
                                 ALIGN(sizeof(struct cmsghdr)) )

4.3.4.  CMSG_SPACE

       unsigned int CMSG_SPACE(unsigned int length);

   This macro is new with this API.  Given the length of an ancillary
   data object, CMSG_SPACE() returns the space required by the object
   and its cmsghdr structure, including any padding needed to satisfy
   alignment requirements.  This macro can be used, for example, to
   allocate space dynamically for the ancillary data.  This macro should
   not be used to initialize the cmsg_len member of a cmsghdr structure;
   instead use the CMSG_LEN() macro.

   One possible implementation could be:

       #define CMSG_SPACE(length) ( ALIGN(sizeof(struct cmsghdr)) + \
                                    ALIGN(length) )

4.3.5.  CMSG_LEN

       unsigned int CMSG_LEN(unsigned int length);

   This macro is new with this API.  Given the length of an ancillary
   data object, CMSG_LEN() returns the value to store in the cmsg_len
   member of the cmsghdr structure, taking into account any padding
   needed to satisfy alignment requirements.

   One possible implementation could be:

       #define CMSG_LEN(length) ( ALIGN(sizeof(struct cmsghdr)) + length
       )

Top      Up      ToC       Page 23 
   Note the difference between CMSG_SPACE() and CMSG_LEN(), shown also
   in the figure in Section 4.2: the former accounts for any required
   padding at the end of the ancillary data object and the latter is the
   actual length to store in the cmsg_len member of the ancillary data
   object.

4.4.  Summary of Options Described Using Ancillary Data

   There are six types of optional information described in this
   document that are passed between the application and the kernel using
   ancillary data:

       1.  the send/receive interface and source/destination address,
       2.  the hop limit,
       3.  next hop address,
       4.  Hop-by-Hop options,
       5.  Destination options, and
       6.  Routing header.

   First, to receive any of this optional information (other than the
   next hop address, which can only be set), the application must call
   setsockopt() to turn on the corresponding flag:

       int  on = 1;

       setsockopt(fd, IPPROTO_IPV6, IPV6_PKTINFO,  &on, sizeof(on));
       setsockopt(fd, IPPROTO_IPV6, IPV6_HOPLIMIT, &on, sizeof(on));
       setsockopt(fd, IPPROTO_IPV6, IPV6_HOPOPTS,  &on, sizeof(on));
       setsockopt(fd, IPPROTO_IPV6, IPV6_DSTOPTS,  &on, sizeof(on));
       setsockopt(fd, IPPROTO_IPV6, IPV6_RTHDR,    &on, sizeof(on));

   When any of these options are enabled, the corresponding data is
   returned as control information by recvmsg(), as one or more
   ancillary data objects.

   Nothing special need be done to send any of this optional
   information; the application just calls sendmsg() and specifies one
   or more ancillary data objects as control information.

   We also summarize the three cmsghdr fields that describe the
   ancillary data objects:

       cmsg_level    cmsg_type      cmsg_data[]               #times
       ------------  ------------   ------------------------  ------
       IPPROTO_IPV6  IPV6_PKTINFO   in6_pktinfo structure     once
       IPPROTO_IPV6  IPV6_HOPLIMIT  int                       once
       IPPROTO_IPV6  IPV6_NEXTHOP   socket address structure  once
       IPPROTO_IPV6  IPV6_HOPOPTS   implementation dependent  mult.

Top      Up      ToC       Page 24 
       IPPROTO_IPV6  IPV6_DSTOPTS   implementation dependent  mult.
       IPPROTO_IPV6  IPV6_RTHDR     implementation dependent  once

   The final column indicates how many times an ancillary data object of
   that type can appear as control information.  The Hop-by-Hop and
   Destination options can appear multiple times, while all the others
   can appear only one time.

   All these options are described in detail in following sections.  All
   the constants beginning with IPV6_ are defined as a result of
   including the <netinet/in.h> header.

   (Note: We intentionally use the same constant for the cmsg_level
   member as is used as the second argument to getsockopt() and
   setsockopt() (what is called the "level"), and the same constant for
   the cmsg_type member as is used as the third argument to getsockopt()
   and setsockopt() (what is called the "option name").  This is
   consistent with the existing use of ancillary data in 4.4BSD:
   returning the destination address of an IPv4 datagram.)

   (Note: It is up to the implementation what it passes as ancillary
   data for the Hop-by-Hop option, Destination option, and Routing
   header option, since the API to these features is through a set of
   inet6_option_XXX() and inet6_rthdr_XXX() functions that we define
   later.  These functions serve two purposes: to simplify the interface
   to these features (instead of requiring the application to know the
   intimate details of the extension header formats), and to hide the
   actual implementation from the application.  Nevertheless, we show
   some examples of these features that store the actual extension
   header as the ancillary data.  Implementations need not use this
   technique.)

4.5.  IPV6_PKTOPTIONS Socket Option

   The summary in the previous section assumes a UDP socket.  Sending
   and receiving ancillary data is easy with UDP: the application calls
   sendmsg() and recvmsg() instead of sendto() and recvfrom().

   But there might be cases where a TCP application wants to send or
   receive this optional information.  For example, a TCP client might
   want to specify a Routing header and this needs to be done before
   calling connect().  Similarly a TCP server might want to know the
   received interface after accept() returns along with any Destination
   options.

Top      Up      ToC       Page 25 
   A new socket option is defined that provides access to the optional
   information described in the previous section, but without using
   recvmsg() and sendmsg().  Setting the socket option specifies any of
   the optional output fields:

       setsockopt(fd, IPPROTO_IPV6, IPV6_PKTOPTIONS, &buf, len);

   The fourth argument points to a buffer containing one or more
   ancillary data objects, and the fifth argument is the total length of
   all these objects.  The application fills in this buffer exactly as
   if the buffer were being passed to sendmsg() as control information.

   The options set by calling setsockopt() for IPV6_PKTOPTIONS are
   called "sticky" options because once set they apply to all packets
   sent on that socket.  The application can call setsockopt() again to
   change all the sticky options, or it can call setsockopt() with a
   length of 0 to remove all the sticky options for the socket.

   The corresponding receive option

       getsockopt(fd, IPPROTO_IPV6, IPV6_PKTOPTIONS, &buf, &len);

   returns a buffer with one or more ancillary data objects for all the
   optional receive information that the application has previously
   specified that it wants to receive.  The fourth argument points to
   the buffer that is filled in by the call.  The fifth argument is a
   pointer to a value-result integer: when the function is called the
   integer specifies the size of the buffer pointed to by the fourth
   argument, and on return this integer contains the actual number of
   bytes that were returned.  The application processes this buffer
   exactly as if the buffer were returned by recvmsg() as control
   information.

   To simplify this document, in the remaining sections when we say "can
   be specified as ancillary data to sendmsg()" we mean "can be
   specified as ancillary data to sendmsg() or specified as a sticky
   option using setsockopt() and the IPV6_PKTOPTIONS socket option".
   Similarly when we say "can be returned as ancillary data by
   recvmsg()" we mean "can be returned as ancillary data by recvmsg() or
   returned by getsockopt() with the IPV6_PKTOPTIONS socket option".

4.5.1.  TCP Sticky Options

   When using getsockopt() with the IPV6_PKTOPTIONS option and a TCP
   socket, only the options from the most recently received segment are
   retained and returned to the caller, and only after the socket option
   has been set.  That is, TCP need not start saving a copy of the
   options until the application says to do so.

Top      Up      ToC       Page 26 
   The application is not allowed to specify ancillary data in a call to
   sendmsg() on a TCP socket, and none of the ancillary data that we
   describe in this document is ever returned as control information by
   recvmsg() on a TCP socket.

4.5.2.  UDP and Raw Socket Sticky Options

   The IPV6_PKTOPTIONS socket option can also be used with a UDP socket
   or with a raw IPv6 socket, normally to set some of the options once,
   instead of with each call to sendmsg().

   Unlike the TCP case, the sticky options can be overridden on a per-
   packet basis with ancillary data specified in a call to sendmsg() on
   a UDP or raw IPv6 socket.  If any ancillary data is specified in a
   call to sendmsg(), none of the sticky options are sent with that
   datagram.

5.  Packet Information

   There are four pieces of information that an application can specify
   for an outgoing packet using ancillary data:

       1.  the source IPv6 address,
       2.  the outgoing interface index,
       3.  the outgoing hop limit, and
       4.  the next hop address.

   Three similar pieces of information can be returned for a received
   packet as ancillary data:

       1.  the destination IPv6 address,
       2.  the arriving interface index, and
       3.  the arriving hop limit.

   The first two pieces of information are contained in an in6_pktinfo
   structure that is sent as ancillary data with sendmsg() and received
   as ancillary data with recvmsg().  This structure is defined as a
   result of including the <netinet/in.h> header.

       struct in6_pktinfo {
         struct in6_addr ipi6_addr;    /* src/dst IPv6 address */
         unsigned int    ipi6_ifindex; /* send/recv interface index */
       };

   In the cmsghdr structure containing this ancillary data, the
   cmsg_level member will be IPPROTO_IPV6, the cmsg_type member will be
   IPV6_PKTINFO, and the first byte of cmsg_data[] will be the first
   byte of the in6_pktinfo structure.

Top      Up      ToC       Page 27 
   This information is returned as ancillary data by recvmsg() only if
   the application has enabled the IPV6_PKTINFO socket option:

       int  on = 1;
       setsockopt(fd, IPPROTO_IPV6, IPV6_PKTINFO, &on, sizeof(on));

   Nothing special need be done to send this information: just specify
   the control information as ancillary data for sendmsg().

   (Note: The hop limit is not contained in the in6_pktinfo structure
   for the following reason.  Some UDP servers want to respond to client
   requests by sending their reply out the same interface on which the
   request was received and with the source IPv6 address of the reply
   equal to the destination IPv6 address of the request.  To do this the
   application can enable just the IPV6_PKTINFO socket option and then
   use the received control information from recvmsg() as the outgoing
   control information for sendmsg().  The application need not examine
   or modify the in6_pktinfo structure at all.  But if the hop limit
   were contained in this structure, the application would have to parse
   the received control information and change the hop limit member,
   since the received hop limit is not the desired value for an outgoing
   packet.)

5.1.  Specifying/Receiving the Interface

   Interfaces on an IPv6 node are identified by a small positive
   integer, as described in Section 4 of [RFC-2133].  That document also
   describes a function to map an interface name to its interface index,
   a function to map an interface index to its interface name, and a
   function to return all the interface names and indexes.  Notice from
   this document that no interface is ever assigned an index of 0.

   When specifying the outgoing interface, if the ipi6_ifindex value is
   0, the kernel will choose the outgoing interface.  If the application
   specifies an outgoing interface for a multicast packet, the interface
   specified by the ancillary data overrides any interface specified by
   the IPV6_MULTICAST_IF socket option (described in [RFC-2133]), for
   that call to sendmsg() only.

   When the IPV6_PKTINFO socket option is enabled, the received
   interface index is always returned as the ipi6_ifindex member of the
   in6_pktinfo structure.

5.2.  Specifying/Receiving Source/Destination Address

   The source IPv6 address can be specified by calling bind() before
   each output operation, but supplying the source address together with
   the data requires less overhead (i.e., fewer system calls) and

Top      Up      ToC       Page 28 
   requires less state to be stored and protected in a multithreaded
   application.

   When specifying the source IPv6 address as ancillary data, if the
   ipi6_addr member of the in6_pktinfo structure is the unspecified
   address (IN6ADDR_ANY_INIT), then (a) if an address is currently bound
   to the socket, it is used as the source address, or (b) if no address
   is currently bound to the socket, the kernel will choose the source
   address.  If the ipi6_addr member is not the unspecified address, but
   the socket has already bound a source address, then the ipi6_addr
   value overrides the already-bound source address for this output
   operation only.

   The kernel must verify that the requested source address is indeed a
   unicast address assigned to the node.

   When the in6_pktinfo structure is returned as ancillary data by
   recvmsg(), the ipi6_addr member contains the destination IPv6 address
   from the received packet.

5.3.  Specifying/Receiving the Hop Limit

   The outgoing hop limit is normally specified with either the
   IPV6_UNICAST_HOPS socket option or the IPV6_MULTICAST_HOPS socket
   option, both of which are described in [RFC-2133].  Specifying the
   hop limit as ancillary data lets the application override either the
   kernel's default or a previously specified value, for either a
   unicast destination or a multicast destination, for a single output
   operation.  Returning the received hop limit is useful for programs
   such as Traceroute and for IPv6 applications that need to verify that
   the received hop limit is 255 (e.g., that the packet has not been
   forwarded).

   The received hop limit is returned as ancillary data by recvmsg()
   only if the application has enabled the IPV6_HOPLIMIT socket option:

       int  on = 1;
       setsockopt(fd, IPPROTO_IPV6, IPV6_HOPLIMIT, &on, sizeof(on));

   In the cmsghdr structure containing this ancillary data, the
   cmsg_level member will be IPPROTO_IPV6, the cmsg_type member will be
   IPV6_HOPLIMIT, and the first byte of cmsg_data[] will be the first
   byte of the integer hop limit.

   Nothing special need be done to specify the outgoing hop limit: just
   specify the control information as ancillary data for sendmsg().  As
   specified in [RFC-2133], the interpretation of the integer hop limit
   value is

Top      Up      ToC       Page 29 
       x < -1:        return an error of EINVAL
       x == -1:       use kernel default
       0 <= x <= 255: use x
       x >= 256:      return an error of EINVAL

5.4.  Specifying the Next Hop Address

   The IPV6_NEXTHOP ancillary data object specifies the next hop for the
   datagram as a socket address structure.  In the cmsghdr structure
   containing this ancillary data, the cmsg_level member will be
   IPPROTO_IPV6, the cmsg_type member will be IPV6_NEXTHOP, and the
   first byte of cmsg_data[] will be the first byte of the socket
   address structure.

   This is a privileged option.  (Note: It is implementation defined and
   beyond the scope of this document to define what "privileged" means.
   Unix systems use this term to mean the process must have an effective
   user ID of 0.)

   If the socket address structure contains an IPv6 address (e.g., the
   sin6_family member is AF_INET6), then the node identified by that
   address must be a neighbor of the sending host.  If that address
   equals the destination IPv6 address of the datagram, then this is
   equivalent to the existing SO_DONTROUTE socket option.

5.5.  Additional Errors with sendmsg()

   With the IPV6_PKTINFO socket option there are no additional errors
   possible with the call to recvmsg().  But when specifying the
   outgoing interface or the source address, additional errors are
   possible from sendmsg().  The following are examples, but some of
   these may not be provided by some implementations, and some
   implementations may define additional errors:

   ENXIO         The interface specified by ipi6_ifindex does not exist.

   ENETDOWN      The interface specified by ipi6_ifindex is not enabled
                 for IPv6 use.

   EADDRNOTAVAIL ipi6_ifindex specifies an interface but the address
                 ipi6_addr is not available for use on that interface.

   EHOSTUNREACH  No route to the destination exists over the interface
                 specified by ifi6_ifindex.

Top      Up      ToC       Page 30 
6.  Hop-By-Hop Options

   A variable number of Hop-by-Hop options can appear in a single Hop-
   by-Hop options header.  Each option in the header is TLV-encoded with
   a type, length, and value.

   Today only three Hop-by-Hop options are defined for IPv6 [RFC-1883]:
   Jumbo Payload, Pad1, and PadN, although a proposal exists for a
   router-alert Hop-by-Hop option.  The Jumbo Payload option should not
   be passed back to an application and an application should receive an
   error if it attempts to set it.  This option is processed entirely by
   the kernel.  It is indirectly specified by datagram-based
   applications as the size of the datagram to send and indirectly
   passed back to these applications as the length of the received
   datagram.  The two pad options are for alignment purposes and are
   automatically inserted by a sending kernel when needed and ignored by

   the receiving kernel.  This section of the API is therefore defined
   for future Hop-by-Hop options that an application may need to specify
   and receive.

   Individual Hop-by-Hop options (and Destination options, which are
   described shortly, and which are similar to the Hop-by-Hop options)
   may have specific alignment requirements.  For example, the 4-byte
   Jumbo Payload length should appear on a 4-byte boundary, and IPv6
   addresses are normally aligned on an 8-byte boundary.  These
   requirements and the terminology used with these options are
   discussed in Section 4.2 and Appendix A of [RFC-1883].  The alignment
   of each option is specified by two values, called x and y, written as
   "xn + y".  This states that the option must appear at an integer
   multiple of x bytes from the beginning of the options header (x can
   have the values 1, 2, 4, or 8), plus y bytes (y can have a value
   between 0 and 7, inclusive).  The Pad1 and PadN options are inserted
   as needed to maintain the required alignment.  Whatever code builds
   either a Hop-by-Hop options header or a Destination options header
   must know the values of x and y for each option.

   Multiple Hop-by-Hop options can be specified by the application.
   Normally one ancillary data object describes all the Hop-by-Hop
   options (since each option is itself TLV-encoded) but the application
   can specify multiple ancillary data objects for the Hop-by-Hop
   options, each object specifying one or more options.  Care must be
   taken designing the API for these options since

   1.   it may be possible for some future Hop-by-Hop options to be
        generated by the application and processed entirely by the
        application (e.g., the kernel may not know the alignment
        restrictions for the option),

Top      Up      ToC       Page 31 
   2.   it must be possible for the kernel to insert its own Hop-by-Hop
        options in an outgoing packet (e.g., the Jumbo Payload option),

   3.   the application can place one or more Hop-by-Hop options into a
        single ancillary data object,

   4.   if the application specifies multiple ancillary data objects,
        each containing one or more Hop-by-Hop options, the kernel must
        combine these a single Hop-by-Hop options header, and

   5.   it must be possible for the kernel to remove some Hop-by-Hop
        options from a received packet before returning the remaining
        Hop-by-Hop options to the application.  (This removal might
        consist of the kernel converting the option into a pad option of
        the same length.)

   Finally, we note that access to some Hop-by-Hop options or to some
   Destination options, might require special privilege.  That is,
   normal applications (without special privilege) might be forbidden
   from setting certain options in outgoing packets, and might never see
   certain options in received packets.

6.1.  Receiving Hop-by-Hop Options

   To receive Hop-by-Hop options the application must enable the
   IPV6_HOPOPTS socket option:

       int  on = 1;
       setsockopt(fd, IPPROTO_IPV6, IPV6_HOPOPTS, &on, sizeof(on));

   All the Hop-by-Hop options are returned as one ancillary data object
   described by a cmsghdr structure.  The cmsg_level member will be
   IPPROTO_IPV6 and the cmsg_type member will be IPV6_HOPOPTS.  These
   options are then processed by calling the inet6_option_next() and
   inet6_option_find() functions, described shortly.

6.2.  Sending Hop-by-Hop Options

   To send one or more Hop-by-Hop options, the application just
   specifies them as ancillary data in a call to sendmsg().  No socket
   option need be set.

   Normally all the Hop-by-Hop options are specified by a single
   ancillary data object.  Multiple ancillary data objects, each
   containing one or more Hop-by-Hop options, can also be specified, in
   which case the kernel will combine all the Hop-by-Hop options into a
   single Hop-by-Hop extension header.  But it should be more efficient
   to use a single ancillary data object to describe all the Hop-by-Hop

Top      Up      ToC       Page 32 
   options.  The cmsg_level member is set to IPPROTO_IPV6 and the
   cmsg_type member is set to IPV6_HOPOPTS.  The option is normally
   constructed using the inet6_option_init(), inet6_option_append(), and
   inet6_option_alloc() functions, described shortly.

   Additional errors may be possible from sendmsg() if the specified
   option is in error.

6.3.  Hop-by-Hop and Destination Options Processing

   Building and parsing the Hop-by-Hop and Destination options is
   complicated for the reasons given earlier.  We therefore define a set
   of functions to help the application.  The function prototypes for
   these functions are all in the <netinet/in.h> header.

6.3.1.  inet6_option_space

       int inet6_option_space(int nbytes);

   This function returns the number of bytes required to hold an option
   when it is stored as ancillary data, including the cmsghdr structure
   at the beginning, and any padding at the end (to make its size a
   multiple of 8 bytes).  The argument is the size of the structure
   defining the option, which must include any pad bytes at the
   beginning (the value y in the alignment term "xn + y"), the type
   byte, the length byte, and the option data.

   (Note: If multiple options are stored in a single ancillary data
   object, which is the recommended technique, this function
   overestimates the amount of space required by the size of N-1 cmsghdr
   structures, where N is the number of options to be stored in the
   object.  This is of little consequence, since it is assumed that most
   Hop-by-Hop option headers and Destination option headers carry only
   one option (p. 33 of [RFC-1883]).)

6.3.2.  inet6_option_init

       int inet6_option_init(void *bp, struct cmsghdr **cmsgp, int
       type);

   This function is called once per ancillary data object that will
   contain either Hop-by-Hop or Destination options.  It returns 0 on
   success or -1 on an error.

   bp is a pointer to previously allocated space that will contain the
   ancillary data object.  It must be large enough to contain all the
   individual options to be added by later calls to
   inet6_option_append() and inet6_option_alloc().

Top      Up      ToC       Page 33 
   cmsgp is a pointer to a pointer to a cmsghdr structure.  *cmsgp is
   initialized by this function to point to the cmsghdr structure
   constructed by this function in the buffer pointed to by bp.

   type is either IPV6_HOPOPTS or IPV6_DSTOPTS.  This type is stored in
   the cmsg_type member of the cmsghdr structure pointed to by *cmsgp.

6.3.3.  inet6_option_append


       int inet6_option_append(struct cmsghdr *cmsg, const uint8_t *typep,
                               int multx, int plusy);

   This function appends a Hop-by-Hop option or a Destination option
   into an ancillary data object that has been initialized by
   inet6_option_init().  This function returns 0 if it succeeds or -1 on
   an error.

   cmsg is a pointer to the cmsghdr structure that must have been
   initialized by inet6_option_init().

   typep is a pointer to the 8-bit option type.  It is assumed that this
   field is immediately followed by the 8-bit option data length field,
   which is then followed immediately by the option data.  The caller
   initializes these three fields (the type-length-value, or TLV) before
   calling this function.

   The option type must have a value from 2 to 255, inclusive.  (0 and 1
   are reserved for the Pad1 and PadN options, respectively.)

   The option data length must have a value between 0 and 255,
   inclusive, and is the length of the option data that follows.

   multx is the value x in the alignment term "xn + y" described
   earlier.  It must have a value of 1, 2, 4, or 8.

   plusy is the value y in the alignment term "xn + y" described
   earlier.  It must have a value between 0 and 7, inclusive.

6.3.4.  inet6_option_alloc

       uint8_t *inet6_option_alloc(struct cmsghdr *cmsg, int datalen,
                                    int multx, int plusy);

Top      Up      ToC       Page 34 
   This function appends a Hop-by-Hop option or a Destination option
   into an ancillary data object that has been initialized by
   inet6_option_init().  This function returns a pointer to the 8-bit
   option type field that starts the option on success, or NULL on an
   error.

   The difference between this function and inet6_option_append() is
   that the latter copies the contents of a previously built option into
   the ancillary data object while the current function returns a
   pointer to the space in the data object where the option's TLV must
   then be built by the caller.

   cmsg is a pointer to the cmsghdr structure that must have been
   initialized by inet6_option_init().

   datalen is the value of the option data length byte for this option.
   This value is required as an argument to allow the function to
   determine if padding must be appended at the end of the option.  (The
   inet6_option_append() function does not need a data length argument
   since the option data length must already be stored by the caller.)

   multx is the value x in the alignment term "xn + y" described
   earlier.  It must have a value of 1, 2, 4, or 8.

   plusy is the value y in the alignment term "xn + y" described
   earlier.  It must have a value between 0 and 7, inclusive.

6.3.5.  inet6_option_next

       int inet6_option_next(const struct cmsghdr *cmsg, uint8_t
       **tptrp);

   This function processes the next Hop-by-Hop option or Destination
   option in an ancillary data object.  If another option remains to be
   processed, the return value of the function is 0 and *tptrp points to
   the 8-bit option type field (which is followed by the 8-bit option
   data length, followed by the option data).  If no more options remain
   to be processed, the return value is -1 and *tptrp is NULL.  If an
   error occurs, the return value is -1 and *tptrp is not NULL.

   cmsg is a pointer to cmsghdr structure of which cmsg_level equals
   IPPROTO_IPV6 and cmsg_type equals either IPV6_HOPOPTS or
   IPV6_DSTOPTS.

   tptrp is a pointer to a pointer to an 8-bit byte and *tptrp is used
   by the function to remember its place in the ancillary data object
   each time the function is called.  The first time this function is
   called for a given ancillary data object, *tptrp must be set to NULL.

Top      Up      ToC       Page 35 
   Each time this function returns success, *tptrp points to the 8-bit
   option type field for the next option to be processed.

6.3.6.  inet6_option_find

       int inet6_option_find(const struct cmsghdr *cmsg, uint8_t *tptrp,
                             int type);

   This function is similar to the previously described
   inet6_option_next() function, except this function lets the caller
   specify the option type to be searched for, instead of always
   returning the next option in the ancillary data object.  cmsg is a
   pointer to cmsghdr structure of which cmsg_level equals IPPROTO_IPV6
   and cmsg_type equals either IPV6_HOPOPTS or IPV6_DSTOPTS.

   tptrp is a pointer to a pointer to an 8-bit byte and *tptrp is used
   by the function to remember its place in the ancillary data object
   each time the function is called.  The first time this function is
   called for a given ancillary data object, *tptrp must be set to NULL.

   This function starts searching for an option of the specified type
   beginning after the value of *tptrp.  If an option of the specified
   type is located, this function returns 0 and *tptrp points to the 8-
   bit option type field for the option of the specified type.  If an
   option of the specified type is not located, the return value is -1
   and *tptrp is NULL.  If an error occurs, the return value is -1 and
   *tptrp is not NULL.

6.3.7.  Options Examples

   We now provide an example that builds two Hop-by-Hop options.  First
   we define two options, called X and Y, taken from the example in
   Appendix A of [RFC-1883].  We assume that all options will have
   structure definitions similar to what is shown below.

        /* option X and option Y are defined in [RFC-1883], pp. 33-34 */
#define IP6_X_OPT_TYPE       X   /* replace X with assigned value */
#define IP6_X_OPT_LEN       12
#define IP6_X_OPT_MULTX      8   /* 8n + 2 alignment */
#define IP6_X_OPT_OFFSETY    2

struct ip6_X_opt {
  uint8_t   ip6_X_opt_pad[IP6_X_OPT_OFFSETY];
  uint8_t   ip6_X_opt_type;
  uint8_t   ip6_X_opt_len;
  uint32_t  ip6_X_opt_val1;
  uint64_t  ip6_X_opt_val2;
};

Top      Up      ToC       Page 36 
#define IP6_Y_OPT_TYPE       Y   /* replace Y with assigned value */
#define IP6_Y_OPT_LEN        7
#define IP6_Y_OPT_MULTX      4   /* 4n + 3 alignment */
#define IP6_Y_OPT_OFFSETY    3

struct ip6_Y_opt {
  uint8_t   ip6_Y_opt_pad[IP6_Y_OPT_OFFSETY];
  uint8_t   ip6_Y_opt_type;
  uint8_t   ip6_Y_opt_len;
  uint8_t   ip6_Y_opt_val1;
  uint16_t  ip6_Y_opt_val2;
  uint32_t  ip6_Y_opt_val3;
};

   We now show the code fragment to build one ancillary data object
   containing both options.

struct msghdr  msg;
struct cmsghdr  *cmsgptr;
struct ip6_X_opt  optX;
struct ip6_Y_opt  optY;

msg.msg_control = malloc(inet6_option_space(sizeof(optX) +
                                            sizeof(optY)));

inet6_option_init(msg.msg_control, &cmsgptr, IPV6_HOPOPTS);

optX.ip6_X_opt_type = IP6_X_OPT_TYPE;
optX.ip6_X_opt_len  = IP6_X_OPT_LEN;
optX.ip6_X_opt_val1 = <32-bit value>;
optX.ip6_X_opt_val2 = <64-bit value>;
inet6_option_append(cmsgptr, &optX.ip6_X_opt_type,
                    IP6_X_OPT_MULTX, IP6_X_OPT_OFFSETY);

optY.ip6_Y_opt_type = IP6_Y_OPT_TYPE;
optY.ip6_Y_opt_len  = IP6_Y_OPT_LEN;
optY.ip6_Y_opt_val1 = <8-bit value>;
optY.ip6_Y_opt_val2 = <16-bit value>;
optY.ip6_Y_opt_val3 = <32-bit value>;
inet6_option_append(cmsgptr, &optY.ip6_Y_opt_type,
                    IP6_Y_OPT_MULTX, IP6_Y_OPT_OFFSETY);

msg.msg_controllen = cmsgptr->cmsg_len;

   The call to inet6_option_init() builds the cmsghdr structure in the
   control buffer.

Top      Up      ToC       Page 37 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       cmsg_len = CMSG_LEN(0) = 12                             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       cmsg_level = IPPROTO_IPV6                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       cmsg_type = IPV6_HOPOPTS                                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Here we assume a 32-bit architecture where sizeof(struct cmsghdr)
   equals 12, with a desired alignment of 4-byte boundaries (that is,
   the ALIGN() macro shown in the sample implementations of the
   CMSG_xxx() macros rounds up to a multiple of 4).

   The first call to inet6_option_append() appends the X option.  Since
   this is the first option in the ancillary data object, 2 bytes are
   allocated for the Next Header byte and for the Hdr Ext Len byte.  The
   former will be set by the kernel, depending on the type of header
   that follows this header, and the latter byte is set to 1.  These 2
   bytes form the 2 bytes of padding (IP6_X_OPT_OFFSETY) required at the
   beginning of this option.

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       cmsg_len = 28                                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       cmsg_level = IPPROTO_IPV6                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       cmsg_type = IPV6_HOPOPTS                                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Next Header  | Hdr Ext Len=1 | Option Type=X |Opt Data Len=12|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         4-octet field                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     +                         8-octet field                         +
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The cmsg_len member of the cmsghdr structure is incremented by 16,
   the size of the option.

   The next call to inet6_option_append() appends the Y option to the
   ancillary data object.

Top      Up      ToC       Page 38 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       cmsg_len = 44                                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       cmsg_level = IPPROTO_IPV6                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       cmsg_type = IPV6_HOPOPTS                                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Next Header  | Hdr Ext Len=3 | Option Type=X |Opt Data Len=12|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         4-octet field                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     +                         8-octet field                         +
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | PadN Option=1 |Opt Data Len=1 |       0       | Option Type=Y |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Opt Data Len=7 | 1-octet field |         2-octet field         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         4-octet field                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | PadN Option=1 |Opt Data Len=2 |       0       |       0       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   16 bytes are appended by this function, so cmsg_len becomes 44.  The
   inet6_option_append() function notices that the appended data
   requires 4 bytes of padding at the end, to make the size of the
   ancillary data object a multiple of 8, and appends the PadN option
   before returning.  The Hdr Ext Len byte is incremented by 2 to become
   3.

   Alternately, the application could build two ancillary data objects,
   one per option, although this will probably be less efficient than
   combining the two options into a single ancillary data object (as
   just shown).  The kernel must combine these into a single Hop-by-Hop
   extension header in the final IPv6 packet.

       struct msghdr  msg;
       struct cmsghdr  *cmsgptr;
       struct ip6_X_opt  optX;
       struct ip6_Y_opt  optY;

       msg.msg_control = malloc(inet6_option_space(sizeof(optX)) +
                                inet6_option_space(sizeof(optY)));

       inet6_option_init(msg.msg_control, &cmsgptr, IPPROTO_HOPOPTS);

       optX.ip6_X_opt_type = IP6_X_OPT_TYPE;

Top      Up      ToC       Page 39 
       optX.ip6_X_opt_len  = IP6_X_OPT_LEN;
       optX.ip6_X_opt_val1 = <32-bit value>;
       optX.ip6_X_opt_val2 = <64-bit value>;
       inet6_option_append(cmsgptr, &optX.ip6_X_opt_type,
                           IP6_X_OPT_MULTX, IP6_X_OPT_OFFSETY);
       msg.msg_controllen = CMSG_SPACE(sizeof(optX));

       inet6_option_init((u_char *)msg.msg_control + msg.msg_controllen,
                         &cmsgptr, IPPROTO_HOPOPTS);

       optY.ip6_Y_opt_type = IP6_Y_OPT_TYPE;
       optY.ip6_Y_opt_len  = IP6_Y_OPT_LEN;
       optY.ip6_Y_opt_val1 = <8-bit value>;
       optY.ip6_Y_opt_val2 = <16-bit value>;
       optY.ip6_Y_opt_val3 = <32-bit value>;
       inet6_option_append(cmsgptr, &optY.ip6_Y_opt_type,
                           IP6_Y_OPT_MULTX, IP6_Y_OPT_OFFSETY);
       msg.msg_controllen += cmsgptr->cmsg_len;

   Each call to inet6_option_init() builds a new cmsghdr structure, and
   the final result looks like the following:

Top      Up      ToC       Page 40 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       cmsg_len = 28                                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       cmsg_level = IPPROTO_IPV6                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       cmsg_type = IPV6_HOPOPTS                                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Next Header  | Hdr Ext Len=1 | Option Type=X |Opt Data Len=12|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         4-octet field                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     +                         8-octet field                         +
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       cmsg_len = 28                                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       cmsg_level = IPPROTO_IPV6                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       cmsg_type = IPV6_HOPOPTS                                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Next Header  | Hdr Ext Len=1 | Pad1 Option=0 | Option Type=Y |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Opt Data Len=7 | 1-octet field |         2-octet field         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         4-octet field                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | PadN Option=1 |Opt Data Len=2 |       0       |       0       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   When the kernel combines these two options into a single Hop-by-Hop
   extension header, the first 3 bytes of the second ancillary data
   object (the Next Header byte, the Hdr Ext Len byte, and the Pad1
   option) will be combined into a PadN option occupying 3 bytes.

   The following code fragment is a redo of the first example shown
   (building two options in a single ancillary data object) but this
   time we use inet6_option_alloc().

uint8_t  *typep;
struct msghdr  msg;
struct cmsghdr  *cmsgptr;
struct ip6_X_opt  *optXp;  /* now a pointer, not a struct */
struct ip6_Y_opt  *optYp;  /* now a pointer, not a struct */

msg.msg_control = malloc(inet6_option_space(sizeof(*optXp) +
                                            sizeof(*optYp)));

Top      Up      ToC       Page 41 
inet6_option_init(msg.msg_control, &cmsgptr, IPV6_HOPOPTS);

typep = inet6_option_alloc(cmsgptr, IP6_X_OPT_LEN,
                           IP6_X_OPT_MULTX, IP6_X_OPT_OFFSETY);
optXp = (struct ip6_X_opt *) (typep - IP6_X_OPT_OFFSETY);
optXp->ip6_X_opt_type = IP6_X_OPT_TYPE;
optXp->ip6_X_opt_len  = IP6_X_OPT_LEN;
optXp->ip6_X_opt_val1 = <32-bit value>;
optXp->ip6_X_opt_val2 = <64-bit value>;

typep = inet6_option_alloc(cmsgptr, IP6_Y_OPT_LEN,
                           IP6_Y_OPT_MULTX, IP6_Y_OPT_OFFSETY);
optYp = (struct ip6_Y_opt *) (typep - IP6_Y_OPT_OFFSETY);
optYp->ip6_Y_opt_type = IP6_Y_OPT_TYPE;
optYp->ip6_Y_opt_len  = IP6_Y_OPT_LEN;
optYp->ip6_Y_opt_val1 = <8-bit value>;
optYp->ip6_Y_opt_val2 = <16-bit value>;
optYp->ip6_Y_opt_val3 = <32-bit value>;

msg.msg_controllen = cmsgptr->cmsg_len;

   Notice that inet6_option_alloc() returns a pointer to the 8-bit
   option type field.  If the program wants a pointer to an option
   structure that includes the padding at the front (as shown in our
   definitions of the ip6_X_opt and ip6_Y_opt structures), the y-offset
   at the beginning of the structure must be subtracted from the
   returned pointer.

   The following code fragment shows the processing of Hop-by-Hop
   options using the inet6_option_next() function.

    struct msghdr   msg;
    struct cmsghdr  *cmsgptr;

    /* fill in msg */

    /* call recvmsg() */

    for (cmsgptr = CMSG_FIRSTHDR(&msg); cmsgptr != NULL;
         cmsgptr = CMSG_NXTHDR(&msg, cmsgptr)) {
        if (cmsgptr->cmsg_level == IPPROTO_IPV6 &&
            cmsgptr->cmsg_type == IPV6_HOPOPTS) {

            uint8_t  *tptr = NULL;

            while (inet6_option_next(cmsgptr, &tptr) == 0) {
                if (*tptr == IP6_X_OPT_TYPE) {
                    struct ip6_X_opt  *optXp;

Top      Up      ToC       Page 42 
                    optXp = (struct ip6_X_opt *) (tptr - IP6_X_OPT_OFFSETY);
                    <do whatever with> optXp->ip6_X_opt_val1;
                    <do whatever with> optXp->ip6_X_opt_val2;

                } else if (*tptr == IP6_Y_OPT_TYPE) {
                    struct ip6_Y_opt  *optYp;

                    optYp = (struct ip6_Y_opt *) (tptr - IP6_Y_OPT_OFFSETY);
                    <do whatever with> optYp->ip6_Y_opt_val1;
                    <do whatever with> optYp->ip6_Y_opt_val2;
                    <do whatever with> optYp->ip6_Y_opt_val3;
                }
            }
            if (tptr != NULL)
                <error encountered by inet6_option_next()>;
        }
    }



(page 42 continued on part 3)

Next RFC Part